Nonlinear and relaxation processes in piezoceramics in weak electric fields

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

We study the effects of piezoelectric hysteresis and relaxation induced by a weak constant electric field in ferroelectric ceramics. Using the piezoelectric resonance analysis method and program, precision measurements of the impedance spectra for thickness and radial vibrations of thin piezoceramic disks were performed for various polarities of the applied constant electric field and polarization of the piezoceramic. An analysis of the field and time dependences of the complex piezoelectric constants of piezoceramics obtained by processing sequentially measured impedance spectra is carried out, and a physical interpretation of the results is proposed.

Sobre autores

N. Shvetsova

Institute of Physics, Southern Federal University

Autor responsável pela correspondência
Email: nashvecova@sfedu.ru
Russia, 344090, Rostov-on-Don

I. Shvetsov

Institute of Physics, Southern Federal University

Email: nashvecova@sfedu.ru
Russia, 344090, Rostov-on-Don

E. Petrova

Institute of Physics, Southern Federal University

Email: nashvecova@sfedu.ru
Russia, 344090, Rostov-on-Don

A. Reznichenko

Institute of Physics, Southern Federal University

Email: nashvecova@sfedu.ru
Russia, 344090, Rostov-on-Don

A. Rybyanets

Institute of Physics, Southern Federal University

Email: nashvecova@sfedu.ru
Russia, 344090, Rostov-on-Don

Bibliografia

  1. Zhao D., Lenz T., Gelinck G.H. et al. // Nature Commun. 2019. V. 10. No. 6. Art. No. 2547.
  2. IEEE Standard on piezoelectricity. ANSI/IEEE Std. 176-1987. New York: IEEE 1987. 176 p.
  3. Kwok K.W., Chan H.L.W., Choy C.L. // IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 1997. V. 44. No. 4. P. 733.
  4. Esin A.A., Alikin D.O., Turygin A.P. et al. // J. Appl. Phys. 2017. V. 121. No. 7. Art. No. 074101.
  5. Turygin A.P., Alikin D.O., Abramov A.S. et al. // Ferroelectrics. 2017. V. 508. No. 1. P. 77.
  6. Rybianets A. Motsarenko T., Goland V., Kushkuley L. // Proc. USE2007 (Tsukuba, 2007). P. 1909.
  7. Швецов И.А., Луговая М.А., Швецова Н.А. и др. // Письма в ЖТФ. 2020. Т. 46. № 8. С. 14; Shvetsov I.A., Lugovaya M.A., Shvetsova N.A. et al. // Tech. Phys. Lett. 2020. V. 46 No. 4. P. 368.
  8. Shvetsova N.A., Shcherbinin S.A., Shvetsov I.A. et al. // Ferroelectrics. 2021. V. 576. No. 1. P. 100.
  9. https://www.tasitechnical.com/prap.
  10. Konstantinov G.M. Rybyanets A.N., Konstantinova Y.B. et al. // In: Advanced materials: manufacturing, physics, mechanics and applications. N.Y.: Springer Proc. Phys, 2016. P. 229.
  11. Berlincourt D.A., Curran D.R., Jaffe H. Physical acoustics. N.Y.: Academic Press, 1964. P. 169.
  12. Shen L.C., Kong J.A. Applied electromagnetism. Boston: PWS Engineering, 1983.
  13. Rybyanets A.N., Chang S.-H., Theerakulpisut S. // In: Advanced materials – studies and applications. N.Y.: Nova Science Publishers Inc., 2015. P. 147.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (1MB)
3.

Baixar (294KB)
4.

Baixar (412KB)
5.

Baixar (191KB)

Declaração de direitos autorais © Н.А. Швецова, И.А. Швецов, Е.И. Петрова, А.Н. Резниченко, А.Н. Рыбянец, 2023