Моделирование процессов, инициируемых газовым разрядом постоянного тока атмосферного давления в водном растворе нитрата никеля

Обложка

Цитировать

Полный текст

Аннотация

Предлагается 0–D-модель, описывающая процессы, протекающие в системе разряд постоянного тока атмосферного давления – водный раствор нитрата никеля. Модель представлена в виде двух связанных подсистем, одна из которых газовый разряд, а другая раствор. Характеристики плазмы разряда определялись путем совместного решения уравнения Больцмана для электронов, уравнений колебательной кинетики для основных состояний молекул N2, O2, NO, H2 и H2O, а также уравнений химической кинетики (328 реакций, 34 компонента). При решении использовались экспериментально найденные величины приведенных напряженностей электрических полей, колебательные и газовые температуры. Кинетика процессов в растворе включала 121 реакцию и 34 компонента. Результаты расчетов согласуются с экспериментом по колебательным температурам молекул N2(X) и кинетике расходования ионов никеля Ni2+ в растворе и рН раствора. Определены степени конверсии ионов Ni2+ и энергетические выходы конверсии. Выявлены механизмы реакций, которые определяют концентрации основных компонентов в растворе.

Об авторах

Д. А. Шутов

Ивановский государственный химико-технологический университет

Автор, ответственный за переписку.
Email: shutov@isuct.ru
Россия, Иваново

А. Н. Иванов

Ивановский государственный химико-технологический университет

Email: ivanovan@isuct.ru
Россия, Иваново

П. А. Игнатьева

Ивановский государственный химико-технологический университет

Email: poliv3@mail.ru
Россия, Иваново

В. В. Рыбкин

Ивановский государственный химико-технологический университет

Email: rybkin@isuct.ru
Россия, Иваново

Список литературы

  1. Bruggeman P.J., Kushner M.J., Locke B.R., Gardeniers J.D.E., Graham W.G., Graves D.B., Hofman-Caris R.C., Maric D., Reid J.P., Ceriani E., Fernandez Riva D., Foster J.E., Garrick S.C., Gorbanev Y., Hamaguchi S., Iza F., Jablonowski H., Klimova E., Kolb J., Krcma F., Lukes P., Machala Z., Marinov I., Mariotti D., Mededovic Thagard S., Minakata D., Neyts E.C., Pawlat J., Petrovic Z.Lj., Pflieger R., Reuter S., Schram D.C., Schroter S., Shiraiwa M., Tarabova B., Tsai P.A., Verlet J.R.R., von Woedtke T., Wilson K.R., Yasui K., Zvereva G. // Plasma Sources Sci. Technol. 2016. V. 25. P. 053002. https://doi.org/10.1088/0963-0252/25/5/053002
  2. Kovacević V. V., Sretenović G. B., Obradović B. M., Kuraica M. M. // J. Phys. D: Appl. Phys. 2022. V. 55. P. 473002. doi: 10.1088/1361-6463/ac8a56
  3. Grinevich V.I., Kvitkova E.Y., Plastinina N.A., Rybkin V.V. // Plasma Chem. Plasma Process. 2011. V.31. P. 573. doi: 10.1007/S11090-010-9256-1
  4. Jiang B., Zheng J., Qiu S., Wu M., Zhang Q., Yan Z., Xue Q. // Chem. Eng. J. 2014. V. 236. P. 348. doi: 10.1016/j.cej.2013.09.090
  5. Foster J. E. // Phys. Plasmas. 2017. V. 24. P. 055501. https://doi.org/10.1063/1.4977921
  6. Chen Q., Li J., Li Y. // J. Phys. D: Appl. Phys. 2015. V. 48. P. 424005. doi: 10.1088/0022-3727/48/42/424005
  7. Saito G., Akiyama T. // J. Nanomater. 2015. V.16. P. 299. doi: 10.1155/2015/123696
  8. Horikoshi S., Serponec N. // RSC Adv. 2017. V. 7 . P. 47196. doi: https://doi.org/10.1039/C7RA09600C
  9. Misra N.N. // Trends Food Sci. Technol. 2015. V. 45. P. 229. doi: 10.1016/j.tifs.2015.06.005
  10. Mu R., Liu Y., Li R., Xue G., Ognier S. // Chem. Eng. J. 2016. V. 296. doi: 10.1016/j.cej.2016.03.054
  11. Puač N., Gherardi M., Shiratani M. // Plasma Process. Polym. 2018. V. 15. P. 1700174
  12. Jablonowski H., von Woedtke T. // Clin. Plasma Med. 2015. V. 3 P. 42. doi: 10.1016/J.CPME.2015.11.003
  13. Friedman G., Friedman G., Gutsol A., Shekhter A.B., Vasilets V.N., Fridman A. // Plasma Process. Polym. 2008. V. 5. P. 503. doi: 10.1002/ppap.200700154
  14. Liu Z.C., Liu D.X., Chen C., Li D., Yang A.J., Rong M.Z., Chen H.L., Kong M.G. // J. Phys. D: Appl. Phys. 2015.V. 48. P. 495201. doi: 10.1088/0022-3727/48/49/495201
  15. Liu Z.C., Liu D.X., Luo S.T., Wang W.T., Liu Z.J., Yang A. J., Rong Z., Chen H.L., Kong M.G. // J. Phys. D: Appl. Phys. 2019. V. 52. P. 415201. https://doi.org/10.1088/1361-6463/ab2f07
  16. Sakiyama Y., Graves D.B., Chang H.W., Shimizu T., Morfill G.E. // J. Phys. D: Appl. Phys. 2012. V. 45. P. 425201. doi: 10.1088/0022-3727/45/42/425201
  17. Liu Z.C., Lin D.X., Rong M.Z., Chen H.L., Kong M.G. // Plasma Process. Polym. 2017. V.14. P. 1600113. doi: 10.1002/ppap.201600113
  18. Du J., Liu Z., Bai C., Li L., Zhao Y., Wang L., Pan J. // Europ. Phys. J. D. 2018. V. 72. P. 179. https://doi.org/10.1140/epjd/e2018-90138-3
  19. Lietz A.M., Kushner M.J. // J. Phys. D: Appl. Phys. 2016. V. 49. P. 425204. doi: 10.1088/0022-3727/49/42/425204
  20. Chen C., Liu D.X., Liu Z.C., Yang A.J, Chen H.L., Shama G., Kong M.G. // Plasma Chem. Plasma Process. 2014. V. 34. P. 403. doi: 10.1007/s11090-014-954
  21. Norberg S.A., Guy M., Parsey G.M., Lietz A.M. , Johnsen E., Kushner M.J. // J. Phys. D: Appl. Phys. 2019. V. 52. P. 015201. doi: 10.1088/1361-6463/aae41e
  22. Verlackt C., Van Boxem W., Bogaerts A. // Phys. Chem. Chem. Phys. 2018. V. 20. P. 6845. doi: 10.1039/c7cp07593f
  23. Heirman P., Van Boxem W., Bogaerts A. // Phys Chem. Chem. Phys. 2019. V. 21. P. 12881. doi: 10.1039/c9cp00647h
  24. Shutov D.A., Batova N.A., Smirnova K.V., Ivanov A.N., Rybkin V.V. // J Phys D: Appl Phys. 2022. V. 55. P. 345206. https://doi.org/10.1088/1361-6463/ac74f8
  25. Shutov D.A., Smirnova K.V., Ivanov A.N., Rybkin V.V. // Plasma Chem. Plasma Process. 2023. V. 43. P. 577. https://doi.org/10.1007/s11090-023-10322-1
  26. Zheng Y. ,Wang L., Bruggeman P. // J. Vac. Sci. Technol. 2020. V. A38. P. 063005. doi: 10.1116/6.0000575
  27. Guschin A.A., Grinevich V.I., Kvitkova E.Yu., Gusev G.I., Shutov D.A., Ivanov A.N., Manukyan A.S., V.V. Rybkin V.V. // ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2023. V. 65. P. 121. doi: 10.6060/ivkkt.20236607.6835j
  28. Smirnova K.V., Izvekova A.A., Shutov D.A., Ivanov.A.N., Manukyan A.S., Rybkin V.V. // ChemChemTech. 2022. V. 65. P. 112. doi: 10.6060/ivkkt.20226512.6743
  29. Titov V.A., Rybkin V.V., Maximov A.I., Choi H-S. // Plasma Chem. Plasma Process. 2005. V. 25. P. 503. doi: 10.1007/s11090-005-4996-z
  30. Titov V.A., Rybkin V.V., Smirnov S.A., Kulentsan A.L., Choi H-S. // Plasma Chem. Plasma Process. 2006. V. 26. P. 543. doi: 10.1007/s11090-006-9014-6
  31. Bobkova E.S., Smirnov S.A., Zalipaeva Ya.V., Rybkin V.V. // Plasma Chem. Plasma Process. 2014. V. 34. P. 721. doi: 10.1007/s11090-014-9539-z
  32. Smirnov S.A., Shutov D.A., Bobkova E.S., Rybkin V.V. // Plasma Chem. Plasma Process. 2015. V. 35. P. 639. doi: 10.1007/s11090-015-9626-9
  33. Shutov D.A., Smirnov S.A., Bobkova E.S., Rybkin V.V. // Plasma Chem. Plasma Process. 2015. V. 35. P. 107. doi: 10.1007/s11090-014-9596-3
  34. Shutov D.A., Smirnov S.A., Rybkin V.V. // High Energy Chem. 2014. V.48. P. 502. doi: 10.1134/S0018143914060071
  35. Bobkova E.S., Rybkin V.V. // Plasma Chem. Plasma Process. 2015. V. 35. P. 133. doi: 10.1007/s11090-014-9583-8
  36. Herrmann H., Ervens B., Jacobi H.W., Wolke R., Nowacki P., Zellner R. // J. Atmos. Chem. 2000. V. 36. P.231. doi: 10.1002/bbpc.19920960347
  37. Pastina B., LaVerne J.A. // J. Phys. Chem. A. 2001. V. 40. P. 9316. doi: 10.1021/jp012245j
  38. Van Gils C.A.J., Hofmann S., Boekema B.K.H.L., Brandenburg R., Bruggeman P.J. // J. Phys. D: Appl. Phys. 2013. V. 46. P. 175203. doi: 10.1088/0022-3727/46/17/175203
  39. Buehler R.E., Staehelin J., Hoigne J. // J. Phys. Chem. 1984. V. 88. P. 2560. doi: 10.1021/j150656a026
  40. Tomiyasu H., Fukutomi H., Gordon G. // Inorg. Chem. 1985. V. 24. P. 2962. doi: 10.1021/ic00213a018
  41. Pandis S.N., Seinfeld J.H. // J. Geophys. Res. 1989. V. 94. P. 1105. doi: 10.1029/JD094iD01p01105
  42. Shibata T., Nishiyama H. // J. Phys. D: Appl. Phys. 2014. V. 47. P. 105203. doi: 10.1088/0022-3727/47/10/10520
  43. Loegager T., Sehested K. // J. Phys. Chem. 1993. V. 97. P. 10047. doi: 10.1088/0022-3727/47/10/10520
  44. Field R.J., Noyes R.M., Postlethwaite D. // J. Phys. Chem. 1976. V. 80. P. 223. doi: 10.1021/j100544a002
  45. Rabani J., Matheson M.S. The pulse radiolysis of aqueous solutions of potassium ferrocyanide // J. Phys. Chem. 1966. V. 70. P. 761. doi: 10.1021/j100875a025
  46. Sehested K., Holcman J., Bjergbakke E., Hart E.J. // J. Phys. Chem. 1982. V. 86. P.2066. doi: 10.1021/j100208a031
  47. Goldstein S., Squadrito G.L., Pryor W.A., Czapski G. // Free Radic. Biol. Med. 1996. V. 21. P. 965. doi: 10.1016/S0891-5849(96)00280-8
  48. Halpern J., Rabani J. // J. Am. Chem. Soc. 1966. V. 88. P. 699. doi: 10.1021/ja00956a015
  49. Gils C.A.J., Hofmann S., Boekema B.K.H.L., Brandenburg R., Bruggeman P.J. // J. Phys. D: Appl. Phys. 2013. V. 46. P. 175203. doi: 10.1088/0022-3727/46/17/175203
  50. Coddington J.W., Hurst J.K., Lymar S.V. // J. Am. Chem. Soc. 1999. V. 121. P. 2438. doi: 10.1021/ja982887t
  51. Exner M., Herrmann H., Zellner R. // Ber. Bunsenges. Phys. Chem. 1992. V. 96. P. 470. doi: 10.1002/bbpc.19920960347
  52. Barzaghi P., Herrmann H. // Phys. Chem. Chem. Phys. 2002. V. 4. P. 3669. doi: 10.1039/B201652D
  53. Rudich Y., Talukdar R.K., Ravishankara A.R., Fox R.W. // J. Geophys. Res. 1996. V. 101. P. 21023. doi: 10.1029/96JD01844
  54. Shigeo D., Fumiyoshi T., Tsuneo W. // JPN J. Appl. Phys. 2000. V. 39. P. 4914. doi: 10.1143/JJAP.39.4914
  55. Zhang J., Chen J., Li X. // J. Water Resour. Prot. 2009. V. 1. P. 99. doi: 10.4236/jwarp.2009.12014
  56. Rumbach P., Bartels D.M., Sankaran R.M., Go D.B. // Nat. Comm. 2015. V. 6. P. 7248. doi: 10.1038/ncomms8248
  57. Bielski B.H.J., Cabelli D.E., Arudi R.L. // J. Phys. Chem. Ref. Data. 1985. V. 14. P. 1041. doi: 10.1063/1.555739
  58. Knipping E.M., Dabdub D. // J. Geophys. Res. Atmos. 2002. V. 107. P. 4360. doi: 10.1029/2001JD000867
  59. Barat F., Gilles L., Hickel B., Lesigne B. // J. Phys. Chem. 1971. V. 75. P. 2177. doi: 10.1021/j100683a019
  60. Anbar M., Taube H. // J. Am. Chem. Soc. 1954. V. 76. P. 6243. doi: 10.1021/ja01653a007
  61. Loegager T., Sehested K. // J. Phys. Chem. 1993. V. 97. P. 6664. doi: 10.1021/j100141a025
  62. Benderskii V.A., Krivenko A., Ponomarev E., Fedorovich N. // Elektrokhimiya. 1987. V. 23. P. 1435.
  63. Elliot A.J., McCracken D.R., Buxton G.V., Wood N.D. // J. Chem. Soc. Farad. Trans. 1990. V. 86. P.1539. doi: 10.1039/FT9908601539
  64. Goldstein S., Lind J., Merenyi G. // Chem. Rev. 2005. V. 105. P. 2457. doi: 10.1021/cr0307087
  65. Merenyi G., Lind J., Czapski G., Goldstein S. // Inorg. Chem. 2003. V. 42.P. 3796. doi: 10.1021/ic025698r
  66. Buxton G.V., Greenstock C.L., Helman W.P., Ross A.B. // J. Phys. Chem. Ref. Data. 1988. V. 17. P. 513. doi: 10.1063/1.555805
  67. Gear C.W. // Math. Comput. 1973. V. 27. P. 673. doi: 10.2307/2005674
  68. Соколов А.Н. // Научно-технический вестник информационных технологий, механики и оптики. 2012. № 2. С. 88.
  69. Bobkova E.S., Rybkin V.V. // Plasma Chem. Plasma Process. 2015. V. 35. P. 133. doi: 10.1007/s11090-014-9583-8
  70. Malik M.A. // Plasma Chem. Plasma Process. 2010. V. 30. N 1. P. 21. doi: 10.1007/s11090-009-9202-2
  71. Радциг А.А., Смирнов Б.М. Справочник по атомной и молекулярной физике. М.: Атомиздат, 1980. 240 с.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2024