Initiation of a corona discharge from model hydrometeors in an external electric field

Capa

Citar

Texto integral

Resumo

The initiation of a positive corona discharge near a model hydrometeor in air is studied numerically. Hydrometeors in the form of an ellipsoid of revolution and a cylinder with two hemispheres at the ends are considered as models. Threshold characteristics (external electric field strength, particle charge) are obtained for hydrometers of various sizes and shapes at an atmospheric pressure of 0.4−1 atm. Analysis of the results of numerous calculation options shows that the threshold field strength at the top of the hydrometeor is determined by the curvature radius of the surface at this point and air pressure. A universal dependence of the reduced threshold field strength on the product of the curvature radius of the surface and air pressure is obtained. The simulation results indicate the possibility of initiating a corona discharge in a thundercloud from the top of a hydrometeor less than a centimeter long at a subthreshold reduced field strength of 10−15 kV (cm atm).

Sobre autores

I. Kutsyk

Russian Federal Nuclear Center – All-Russian Research Institute of Experimental Physics

Autor responsável pela correspondência
Email: kimsar@list.ru
Rússia, Sarov, Nizhny Novgorod oblast

E. Bochkov

Russian Federal Nuclear Center – All-Russian Research Institute of Experimental Physics

Email: e_i_bochkov@mail.ru
Rússia, Sarov, Nizhny Novgorod oblast

Bibliografia

  1. Райзер Ю.П. Физика газового разряда. Наука. М.: Физматлит, 1992.
  2. Мучник В.М. Физика грозы. Л.:Гидрометиздат, 1974.
  3. Синькевич А.Ф., Довгалюк Ю.А. //Изв. вузов.Радиофизика. 2013. Т. 56. № 11–12. С. 908.
  4. Иудин Д.И. // Изв. вузов. Радиофизика. 2021. Т. 64. № 11. С. 867
  5. Rison W., Krehbiel P. R., Stock M. G., Edens H.E., Shao X., Stanley M., Zhang Y. // Nat. Commun. 2016. V. 7. Art. No. 10721. doi: 10.1038/ncomms10721.
  6. Куцык И.М., Бочков Е.И.//Изв. вузов. Радиофизика. 2023. Т. 66. № 4. С. 239.
  7. Sadighi S, Liu N. Dwayer J., Rassoul H.//Journal of Geophysical Research: Atmospheres. 2015. V. 120. P. 3660. doi: 10.1002/2014JD022724.
  8. Naidis G.V. // J. Phys. D.: Appl. Phys. 2005. V. 38. P. 2211. doi: 10.1088/0022-3727/38/13/020.
  9. Liu N., Dwyer J., Rassoul H. // Journal of Atmospheric and Solar-Terrestrial Physics. 2012. V.8 0. P. 179. https://doi.org/10.1016/j.jastp.2012.01.012.
  10. Peeters S. A., Mirpour S., Köhn C., Nijdam S //Journal of Geophysical Research: Atmospheres. 2022. V. 127. https://doi. org/10.1029/2021JD035505 2022.
  11. Marshall T. C., Winn W. P. //Journal of Geophysical Research: Oceans. 1982. V. 87(C9). P. 7141. https://doi.org/10.1029/jc087ic09p07141.
  12. Babich L.P., Bochkov E.I., Kutsyk I.M., Neubert T. //JETP Letters. 2016. V. 103. № 7. P. 449. doi: 10.1134/S0021364016070031
  13. Dubinova A., Rutjes C., Ebert U., Buitink S., Scholten O., Trinh G.// Physical Review Letters. 2015. V. 115. https://doi.org/10.1103/physrevlett.115.015002.
  14. Богатов Н.А. // Изв. вузов. Радиофизика. 2015. Т. 56. № 11–12. С. 920.
  15. Mirpour S., Nijdam S. //Plasma Sources Sci. Technol. 2022. V. 31. P. 105009. https://doi.org/10.1088/1361-6595/ac95be.
  16. Ландау Л.Д., Лифшиц Е.М. Электродинамика сплошных сред. М.: Физматлит, 2003.
  17. Iudin D. I., Rakov V. A.,. Syssoev A.A., Bulatov A.A., Hayakawa M. //Climate and Atmospheric Science. 2019. V. 2. No. 1. https://doi.org/10.1038/s41612-019-0102-8.
  18. Popov N. A. //Plasma Physics Reports. 2010. V. 36. № 9. P. 812. doi: 10.1134/S1063780X10090084.
  19. Gallimberty I.//Journal De Physicque. 1979. V. 40. № 7. P. 7. doi: 10.1051/JPHYSCOL:19797440.
  20. Александров Н.Л., Пономарев А.А., Сысоев А.А., Иудин Д.И. // Физика плазмы. Т. 49. № 11. С. 1186. doi: 10.31857/S0367292123601054.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2024