Рак и туберкулез легких: обзор ключевых особенностей молекулярных механизмов сочетанной патологии
- Авторы: Агафонов Г.М.1,2, Кудряшов Г.Г.1, Крылова Ю.С.1, Зубарева Т.С.1, Кветной И.М.1,2, Яблонский П.К.1,2
-
Учреждения:
- ФГБУ “Санкт-Петербургский научно-исследовательский институт фтизиопульмонологии” Минздрава России
- ФГБОУ ВО “Санкт-Петербургский государственный университет”
- Выпуск: Том 55, № 3 (2024)
- Страницы: 58-74
- Раздел: Статьи
- URL: https://vietnamjournal.ru/0301-1798/article/view/676212
- DOI: https://doi.org/10.31857/S0301179824030045
- EDN: https://elibrary.ru/BBJJKM
- ID: 676212
Цитировать
Аннотация
Рак легкого и туберкулез органов дыхания являются значимыми проблемами для мирового здравоохранения, занимая лидирующие позиции по заболеваемости и смертности как в развитых, так и в развивающихся странах. Клинико-экспериментальные исследования позволили подробно изучить механизмы развития патологических процессов, лежащих в основе обоих заболеваний, влияние болезней на макроорганизм, различные варианты лекарственной терапии. По данным популяционных исследований, взаимовлияние двух процессов не вызывает никаких сомнений – в равной степени как активный туберкулез и посттуберкулезные изменения являлись факторами риска возникновения неопластического процесса, так и злокачественная опухоль создавала благоприятные условия и предпосылки к развитию микобактериальной инфекции. Однако вопросы механизмов взаимодействия этих двух заболеваний при их сочетании остаются открытыми и недостаточно изученными. В представленном обзоре литературы подробно описаны варианты сочетания рака легкого и туберкулеза легких, патофизиологические основы взаимовлияния инфекционного и неопластического процессов: модуляция иммунного ответа Mycobacterium tuberculosis и опухоли легкого; сигнальные пути онкогенеза, активируемые туберкулезной инфекцией; механизмы эпителиально-мезенхимального перехода в посттуберкулезных рубцовых изменениях и его роль в формировании так называемой “скарциномы”; взаимосвязь опухоль-опосредованной и туберкулез-ассоциированной иммуносупрессии; роль сигнального пути PD-1:PD-L и влияние современных видов противоопухолевой иммунотерапии на течение данных патологических процессов. В заключительной части обзора представлены собственные данные экспериментальных исследований сочетания рака и туберкулеза на лабораторной модели, обозначены перспективные направления изучения данного вопроса.
Ключевые слова
Полный текст

Об авторах
Г. М. Агафонов
ФГБУ “Санкт-Петербургский научно-исследовательский институт фтизиопульмонологии” Минздрава России; ФГБОУ ВО “Санкт-Петербургский государственный университет”
Автор, ответственный за переписку.
Email: g.agafonov.98@gmail.com
Россия, 191036, Санкт-Петербург; 199034, Санкт-Петербург
Г. Г. Кудряшов
ФГБУ “Санкт-Петербургский научно-исследовательский институт фтизиопульмонологии” Минздрава России
Email: g.agafonov.98@gmail.com
Россия, 191036, Санкт-Петербург
Ю. С. Крылова
ФГБУ “Санкт-Петербургский научно-исследовательский институт фтизиопульмонологии” Минздрава России
Email: g.agafonov.98@gmail.com
Россия, 191036, Санкт-Петербург
Т. С. Зубарева
ФГБУ “Санкт-Петербургский научно-исследовательский институт фтизиопульмонологии” Минздрава России
Email: g.agafonov.98@gmail.com
Россия, 191036, Санкт-Петербург
И. М. Кветной
ФГБУ “Санкт-Петербургский научно-исследовательский институт фтизиопульмонологии” Минздрава России; ФГБОУ ВО “Санкт-Петербургский государственный университет”
Email: g.agafonov.98@gmail.com
Россия, 191036, Санкт-Петербург; 199034, Санкт-Петербург
П. К. Яблонский
ФГБУ “Санкт-Петербургский научно-исследовательский институт фтизиопульмонологии” Минздрава России; ФГБОУ ВО “Санкт-Петербургский государственный университет”
Email: g.agafonov.98@gmail.com
Россия, 191036, Санкт-Петербург; 199034, Санкт-Петербург
Список литературы
- Кудряшов Г.Г., Нефедов А.О., Точильников Г.В. и др. Оригинальная экспериментальная модель туберкулеза и рака легкого // Педиатр. 2022. Т. 13. № 5. C. 33–42. https://doi.org/10.17816/PED13533-42
- Кудряшов Г.Г., Нефедов А.О., Точильников Г.В. и др. Влияние туберкулеза на течение карциномы легкого в эксперименте // Мол. Мед. 2023. Т. 21. № 1. С. 43–49.
- Мнихович М.В. Вернигородский С.В., Буньков К.В. и др. Эпителиально-мезенхимальный переход, трансдифференциация, репрограммирование и метаплазия: современный взгляд на проблему // Вестник Национального Медико-Хирургического Центра им. Н.И. Пирогова. 2018. Т. 13. № 2. С. 145–152.
- Перцева Т., Ивах И. Морфологические изменения слизистой оболочки бронхиального дерева при хроническом обструктивном заболевании легких и их значение в диагностике стадии заболевания // Укр. Пульм. Ж. 2009. № 1. C. 50–51.
- Пучинская М.В. Эпителиально- мезенхимальный переход в норме и патологии // Арх. Патол. 2015. Т. 77. № 1. С. 75–83.
- Abdeahad H., Salehi M., Yaghoubi A. et al. Previous pulmonary tuberculosis enhances the risk of lung cancer: systematic reviews and meta-analysis // Infect. V. 54. № 4. P. 255–268. https://doi.org/10.1080/23744235.2021.2006772
- Alvarez I., Pasquinelli V., Jurado J. et al. Role played by the programmed death-1-programmed death ligand pathway during innate immunity against Mycobacterium tuberculosis // J. Infect. Dis. 2010. V. 202. № 4. P. 524–532. https://doi.org/10.1086/654932
- Anand K., Sahu G., Burns E et al. Mycobacterial infections due to PD-1 and PD-L1 checkpoint inhibitors // ESMO Open. 2020. V. 5. № e000866. https://doi.org/10.1136/esmoopen-2020-000866
- Anastasopoulou A., Ziogas D., Samarkos M. et al. Reactivation of tuberculosis in cancer patients following administration of immune checkpoint inhibitors: Current evidence and clinical practice recommendations // Journal for ImmunoTherapy of Cancer. 2019. V. 7. № 239. https://doi.org/10.1186/s40425-019-0717-7
- Ardies C.M. Inflammation as cause for scar cancers of the lung // Integr. Cancer Ther. 2003. V. 3. № 2. P. 238–246. https://doi.org/10.1177/1534735403256332
- Arnett E., Weaver A., Woodyard K. et al. PPARγ is critical for Mycobacterium tuberculosis induction of Mcl-1 and limitation of human macrophage apoptosis // PLoS Pathog. 2018. V. 14. № e1007100. https://doi.org/10.1371/journal.ppat.1007100
- Bae S., Kim Y., Kim M. et al. Risk of tuberculosis in patients with cancer treated with immune checkpoint inhibitors: A nationwide observational study // Journal for ImmunoTherapy of Cancer. 2021. V. 9. № e002960. https://doi.org/10.1136/jitc-2021-002960
- Bayle G.L. Recherches sur la phthisie pulmonaire: ouvrage lu à la Société de la faculté de médecine de Paris, dans diverses séances, en 1809 et 1810. Paris: Gabon, 1810. 439 p.
- Boutilier A.J., Elsawa S.F. Macrophage polarization states in the tumor microenvironment // Int. J. Mol. Sci. 2021. V. 22. № 13. https://doi.org/10.3390/ijms22136995
- Brandenburg J., Reiling N. The Wnt blows: On the functional role of Wnt signaling in mycobacterium tuberculosis infection and beyond // Front. Immunol. 2016. V. 7. № 635. https://doi.org/10.3389/fimmu.2016.00635
- Caetano M. S., Zhang H., Cumpian A. et al. IL6 blockade reprograms the lung tumor microenvironment to limit the development and progression of K-ras-mutant lung cancer // Cancer Res. 2016. V. 76. № 11. P. 3189–3199. https://doi.org/10.1158/0008-5472.CAN-15-2840
- Cao S., Li J., Lu J. et al. Mycobacterium tuberculosis antigens repress Th1 immune response suppression and promotes lung cancer metastasis through PD-1/PDl-1 signaling pathway // Cell Death Dis. 2019. V. 10. № 44. https://doi.org/10.1038/s41419-018-1237-y
- Chai Q., Lu Z., Liu Z. et al. Lung gene expression signatures suggest pathogenic links and molecular markers for pulmonary tuberculosis, adenocarcinoma and sarcoidosis // Commun Biol. 2020. V. 3. № 604. https://doi.org/10.1038/s42003-020-01318-0
- Chen P.P., Li W., Wang Y. et al. Expression of Cyr61, CTGF, and WISP-1 Correlates with Clinical Features of Lung Cancer // PLoS ONE. 2007. V. 2. № e534. https://doi.org/10.1371/journal.pone.0000534
- Chen R., Ma L., Jiang C. et al. Expression and potential role of CCL4 in CD8+T cells in NSCLC // Clinic. Trans.Oncol. 2022. V. 24. № 12. P. 2420–2431. https://doi.org/10.1007/s12094-022-02913-9
- Cheng M.P., Chakra C., Yansouni C. et al. Risk of active tuberculosis in patients with cancer: A systematic review and metaanalysis // Clin. Infect. Dis. 2017. V. 64/ № 5. P. 635–644. https://doi.org/10.1093/cid/ciw838
- Choi R., Kim K., Kim M. et al. Serum inflammatory profiles in pulmonary tuberculosis and their association with treatment response // J. Proteomics. 2016. V. 149. P. 23–30. https://doi.org/10.1016/j.jprot.2016.06.016
- Ciesielska A., Matyjek M., Kwiatkowska K. TLR4 and CD14 trafficking and its influence on LPS-induced pro-inflammatory signaling // Cell. Mol. Life Sci. 2021. V. 78. № 4. P. 1233–1261. https://doi.org/10.1007/s00018-020-03656-y
- Cohen S.B., Gern B., Delahaye J. et al. Alveolar Macrophages Provide an Early Mycobacterium tuberculosis Niche and Initiate Dissemination // Cell Host Microbe. 2018. V. 24. № 3. P. 439–446. https://doi.org/10.1016/j.chom.2018.08.001
- Corrêa R.D.S., Rodrigues L., Pereira L. et al. Neutrophil CD64 expression levels in IGRA-positive individuals distinguish latent tuberculosis from active disease // Mem. Inst. Oswaldo Cruz. 2019. V. 114. № e180579. https://doi.org/10.1590/0074-02760180579
- Kauffman K.D., Sakai S., Lora N.E. et al. PD-1 blockade exacerbates Mycobacterium tuberculosis infection in rhesus macaques // Sci Immunol. 2021. V. 6. № eabf3861. https://doi.org/10.1126/sciimmunol.abf3861
- Barber D.L., Mayer-Barber K.D., Feng C.G. et al. CD4 T Cells Promote Rather than Control Tuberculosis in the Absence of PD-1-Mediated Inhibition // J. Immunol. 2011. V. 186. № 3. P. 1598–1607. https://doi.org/10.4049/jimmunol.1003304
- Delgobo M., Mendes D., Kozlova E. et al. An evolutionary recent IFN/IL-6/CEBP axis is linked to monocyte expansion and tuberculosis severity in humans // eLife. 2019. V. 8. № e47013. https://doi.org/10.7554/eLife.47013
- Dobler C.C., Cheung K., Nguyen J., Martin A. Risk of tuberculosis in patients with solid cancers and haematological malignancies: A systematic review and meta-analysis // Eur. Respir. J. 2017. V. 50. № 1700157. https://doi.org/10.1183/13993003.00157-2017
- Duan S., Tsai Y., Keng P. et al. IL-6 signaling contributes to cisplatin resistance in non-small cell lung cancer via the up-regulation of anti-apoptotic and DNA repair associated molecules // Oncotarget. 2015. V. 6. № 29. P. 27651–27660. https://doi.org/10.18632/oncotarget.4753
- Dyck L., Mills K.H.G. Immune checkpoints and their inhibition in cancer and infectious diseases // Eur. J. of Immunol. 2017. V. 47. № 5. P. 765–779. https://doi.org/10.1002/eji.201646875
- Fedorov A.A., Ermak N.A., Gerashchenko T.S. et al. Polarization of Macrophages: Mechanisms, Markers and Factors of Induction // Siberian Journal of Oncology. 2022. V. 21. № 4. P. 124–136. https://doi.org/10.21294/1814-4861-2022-21-4-124-136
- Friedrich G. Peripheral lung cancers on the floor near pleural scars. // Virchows Arch. path Anat. 1939. V. 304. P. 230–247. https://doi.org/10.1007/BF02595199
- Georgieva M., Sia J., Bizzell E. et al. Mycobacterium tuberculosis GroEL2 modulates dendritic cell responses // Infect. Immun. 2018. V. 11. № 4. P. 359–374. https://doi.org/10.1159/000495528
- Grahnert A., Weiss R., Schilling E. et al. CD14 counterregulates lipopolysacharide-induced tumor necrosis factor-α production in a macrophage subset // J. Innate Immun. 2019. V. 11. № 4. P. 359–374. https://doi.org/10.1159/000495528
- Gupte A.N., Kumar P., Araújo-Pereira M. et al. Baseline IL-6 is a biomarker for unfavourable tuberculosis treatment outcomes: a multisite discovery and validation study. // Eur. Respir. J. 2022. V. 59. № 2100905. https://doi.org/10.1183/13993003.00905-2021
- Hamilton F., Schurz H., Yates T.A. et al. Altered IL-6 signalling and risk of tuberculosis disease: a meta-analysis and Mendelian randomisation study. // medRxiv. Preprint. 2023. https://doi.org/10.1101/2023.02.07.23285472
- Ho L.J., Yang H.Y., Chung C.H. et al. Increased risk of secondary lung cancer in patients with tuberculosis: A nationwide, population-based cohort study. // PLoS One. V. 16. № e0250531. https://doi.org/10.1371/journal.pone.0250531
- Hofman P., Vouret-Craviari V. Microbes-induced EMT at the crossroad of inflammation and cancer // Gut Microbes. 2012. V. 3. № 3. P. 176–185. https://doi.org/10.4161/gmic.20288
- Holla S., Ghorpade D., Singh V. et al. Mycobacterium bovis BCG promotes tumor cell survival from tumor necrosis factor-α-induced apoptosis // Mol. Cancer. 2014. V. 13. № 210. https://doi.org/10.1186/1476-4598-13-210
- Hwang K., Paik S.S., Lee S.H. Impact of pulmonary tuberculosis on the EGFR mutational status and clinical outcome in patients with lung adenocarcinoma // Cancer Res. Treat. 2019. V. 51. № 1. P. 158–168. https://doi.org/10.4143/crt.2018.084
- Hwang, S.Y., Kim J.Y., Lee H.S. et al. Pulmonary Tuberculosis and Risk of Lung Cancer: A Systematic Review and Meta-Analysis // J. Clin. Med. 2022. V. 11. № 765. https://doi.org/10.3390/jcm11030765
- Iwai Y., Terawaki S., Ikegawa M. et al. PD-1 inhibits antiviral immunity at the effector phase in the liver // J. Exp. Med. 2003. V. 198. № 1. P. 39–50. https://doi.org/10.1084/jem.20022235
- Jurado J.O., Alvarez I.B., Pasquinelli V. et al. Programmed Death (PD)-1:PD-Ligand 1/PD-Ligand 2 Pathway Inhibits T Cell Effector Functions during Human Tuberculosis // J. Immunol. 2008. V. 181. № 1. P. 116–125. https://doi.org/10.4049/jimmunol.181.1.116
- Karin M., Lawrence T., Nizet V. Innate immunity gone awry: Linking microbial infections to chronic inflammation and cancer // Cell. 2006. V. 124. № 4. P. 823–835. https://doi.org/10.1016/j.cell.2006.02.016
- Kim H.R., Hwang S.S., Ro Y.K. et al. Solid-organ malignancy as a risk factor for tuberculosis // Respirology. 2008. V. 13. № 3. P. 413–419. https://doi.org/10.1111/j.1440-1843.2008.01282.x
- Kim Y., Park S.Y., Jung H. et al. Inhibition of NADPH oxidase 4 (NOX4) signaling attenuates tuberculous pleural fibrosis // J. Clin. Med. 2019. V. 8. № 116. https://doi.org/10.3390/jcm8010116
- Königshoff M. Lung cancer in pulmonary fibrosis: Tales of epithelial cell plasticity // Respiration. 2011. V. 81. № 5. P. 353–358. https://doi.org/10.1159/000326299
- Kuo C.H., Lo C.Y., Chung F.T. et al. Concomitant active tuberculosis prolongs survival in non-small cell lung cancer: A study in a tuberculosis-endemic country // PLoS ONE. 2012. V. 7. № e33226. https://doi.org/10.1371/journal.pone.0033226
- Lakshmi S.P., Reddy A.T., Banno A., Reddy R.C. PPAR Agonists for the Prevention and Treatment of Lung Cancer // PPAR Res. 2017. V. 2017. № 8252796. https://doi.org/10.1155/2017/8252796
- Langan E.A., Graetz V., Allerheiligen J. et al. Immune checkpoint inhibitors and tuberculosis: an old disease in a new context // The Lancet Oncol. 2020. V. 21. № 1. P. e55–e65. https://doi.org/10.1016/S1470-2045(19)30674-6
- Lavin Y., Kobayashi S., Leader A. et al. Innate Immune Landscape in Early Lung Adenocarcinoma by Paired Single-Cell Analyses // Cell. 2017. V. 169. № 4. P. 750–765. https://doi.org/10.1016/j.cell.2017.04.014
- Lázár-Molnár E., Gácser A., Freeman G. et al. The PD-1/PD-L costimulatory pathway critically affects host resistance to the pathogenic fungus Histoplasma capsulatum // Proc. Natl. Acad. Sci. U. S. A. 2008. V. 105. № 7. P. 2658–2663. https://doi.org/10.1073/pnas.0711918105
- Li L., Liu Y.D., Zhan Y.T. et al. High levels of CCL2 or CCL4 in the tumor microenvironment predict unfavorable survival in lung adenocarcinoma // Thorac. Cancer. 2018. v. 9. № 7. P. 775–784. https://doi.org/10.1111/1759-7714.12643
- Liang H.Y., Li X.L., Yu X.S. et al. Facts and fiction of the relationship between preexisting tuberculosis and lung cancer risk: A systematic review // Int. J. Cancer. 2009. V. 125. № 12. P. 2936–2944. https://doi.org/10.1002/ijc.24636
- Liao K.M., Shu C.C., Liang F.W. et al. Risk Factors for Pulmonary Tuberculosis in Patients with Lung Cancer: A Retrospective Cohort Study // J. Cancer. 2023. V. 125. № 12. P. 2936–2944. https://doi.org/10.1002/ijc.24636
- Lim R.J., Liu B., Krysan K., Dubinett S.M. Lung cancer and immunity markers // Cancer Epidemiol. Biomarkers Prev. 2020. V. 29, № 12. P. 2423–2430. https://doi.org/10.1158/1055-9965.EPI-20-0716
- Liu K., Wang D., Yao C. et al. Increased Tuberculosis Incidence Due to Immunotherapy Based on PD-1 and PD-L1 Blockade: A Systematic Review and Meta-Analysis // Front. Immunol. 2022. V. 13. № 727220. https://doi.org/10.3389/fimmu.2022.727220
- Liu Q., Gao Y., Ou Q. et al. Differential expression of CD64 in patients with Mycobacterium tuberculosis infection: A potential biomarker for clinical diagnosis and prognosis // J. Cell. Mol. Med. 2020. V. 24. № 23. P. 13961–13972. https://doi.org/10.1111/jcmm.16004
- Luczynski P., Poulin P., Romanowski K., Johnston J.C. Tuberculosis and risk of cancer: A systematic review and meta-analysis // PLoS ONE. 2022. V. 17. № e0278661. https://doi.org/10.1371/journal.pone.0278661
- Luo Y.H., Wu C.H., Wu W.S. et al. Association between tumor epidermal growth factor receptor mutation and pulmonary tuberculosis in patients with adenocarcinoma of the lungs // J. Thorac. Oncol. 2012. V. 7. № 2. P. 299–305. https://doi.org/10.1097/JTO.0b013e31823c588d
- Malik A.A., Sheikh J.A., Ehtesham N.Z. et al. Can Mycobacterium tuberculosis infection lead to cancer? Call for a paradigm shift in understanding TB and cancer // Int. J. Med. Microbiol. 2022. V. 312. № 151558. https://doi.org/10.1016/j.ijmm.2022.151558
- Martinez A.N., Mehra S., Kaushal D. Role of interleukin 6 in innate immunity to mycobacterium tuberculosis infection // J. Infect. Dis. 2013. V. 207. № 8. P. 1253–1261. https://doi.org/10.1093/infdis/jit037
- de Martino M., Lodi L., Galli L., Chiappini E. Immune Response to Mycobacterium tuberculosis: A Narrative Review // Front. Pediatr. 2019. V. 7. № 350. https://doi.org/10.3389/fped.2019.00350
- Matsuyama W., Kubota R., Hashiguchi T. et al. Purified protein derivative of tuberculin upregulates the expression of vascular endothelial growth factor in T lymphocytes in vitro // Immunology. 2002. V. 106. № 1. P. 96–101. https://doi.org/10.1046/j.1365-2567.2002.01395.x
- Moghaddam S.J., Li H., Cho S.N. et al. Promotion of lung carcinogenesis by chronic obstructive pulmonary disease-like airway inflammation in a K-ras-induced mouse model // Am. J. Respir. Cell Mol. Biol. 2009. V. 40. № 4. P. 443–453. https://doi.org/10.1165/rcmb.2008-0198OC
- Mueller S.N., Vanguri V.K., Ha S.J. et al. PD-L1 has distinct functions in hematopoietic and nonhematopoietic cells in regulating T cell responses during chronic infection in mice // J. Clin. Invest. 2010. V. 120. № 7. P. 2508–2515. https://doi.org/10.1172/JCI40040
- Nalbandian A., Yan B.S., Pichugin A. et al. Lung carcinogenesis induced by chronic tuberculosis infection: The experimental model and genetic control // Oncogene. 2009. V. 28. № 17. P. 1928–1938. https://doi.org/10.1038/onc.2009.32
- Nieto M.A. The ins and outs of the epithelial to mesenchymal transition in health and disease // Annu. Rev. Cell Dev. Biol. 2011. V. 27. P. 347–376. https://doi.org/10.1146/annurev-cellbio-092910-154036
- Ntanasis-Stathopoulos I., Fotiou D., Terpos E. CCL3 Signaling in the Tumor Microenvironment // Adv. Exp. Med. Biol. 2020. V. 1231. P. 13–21. https://doi.org/10.1007/978-3-030-36667-4_2
- Ogawa H., Koyanagi-Aoi M., Otani K. et al. Interleukin-6 blockade attenuates lung cancer tissue construction integrated by cancer stem cells // Sci. Rep. 2017. V. 7. № 12317. https://doi.org/10.1038/s41598-017-12017-y
- Patsoukis N,. Brown J., Petkova V. et al. Selective Effects of PD-1 on Akt and Ras Pathways Regulate Molecular Components of the Cell Cycle and Inhibit T Cell Proliferation // Sci Signal. 2012. V. 5. № ra46. https://doi.org/10.1126/scisignal.2002796
- Pintha K., Chaiwangyen W., Yodkeeree S. et al. Suppressive effects of rosmarinic acid rich fraction from perilla on oxidative stress, inflammation and metastasis ability in A549 cells exposed to PM via C-jun, P-65-Nf-Kb and akt signaling pathways // Biomolecules. 2021. V. 11. № 1090. https://doi.org/10.3390/biom11081090
- Qin Y., Chen Y., Chen J. et al. The relationship between previous pulmonary tuberculosis and risk of lung cancer in the future // Infect. Agent. Cancer. 2022. V. 17. № 20. https://doi.org/10.1186/s13027-022-00434-2
- Reddy С.R. Immunomodulatory role of PPAR-gamma in alveolar macrophages // J. Investing. Med. 2008. V. 56. № 2. P. 522–527. https://doi.org/10.2310/JIM.0b013e3181659972
- Refai A., Gritli S., Barbouche M.R., Essafi M. Mycobacterium tuberculosis virulent factor ESAT-6 drives macrophage differentiation toward the pro-inflammatory M1 phenotype and subsequently switches it to the anti-inflammatory M2 phenotype // Front. Cell. Infect. Microbiol. 2018. V. 8. № 327. https://doi.org/10.3389/fcimb.2018.00327
- Ren Y., Cao L., Wang L. et al. Autophagic secretion of HMGB1 from cancer-associated fibroblasts promotes metastatic potential of non-small cell lung cancer cells via NFκB signaling // Cell Death Dis. 2021. V. 12. № 858. https://doi.org/10.1038/s41419-021-04150-4
- Ruano M.J., Hernández-Hernando S., Jiménez A. et al. Nitric oxide-induced epidermal growth factor-dependent phosphorylations in A431 tumour cells // Eur. J. Biochem. 2003. V. 270. № 8. P. 1828–1837. https://doi org/10.1046/j.1432-1033.2003.03546.x
- Sakai S,. Kauffman K.D., Sallin M.A. et al. CD4 T Cell-Derived IFN-γ Plays a Minimal Role in Control of Pulmonary Mycobacterium tuberculosis Infection and Must Be Actively Repressed by PD-1 to Prevent Lethal Disease // PLoS Pathog. 2016. V. 12. № e1005667. https://doi.org/10.1371/journal.ppat.1005667
- Saukkonen J.J., Bazydlo B., Thomas M. et al. β-chemokines are induced by Mycobacterium tuberculosis and inhibit its growth // Infect. Immun. 2002. V. 70. № 4. P. 1684–1693. https://doi.org/10.1128/IAI.70.4.1684-1693.2002
- Shen L., Shi H., Gao Y., et al. The characteristic profiles of PD-1 and PD-L1 expressions and dynamic changes during treatment in active tuberculosis // Tuberculosis (Edinb). 2016. V. 101. P. 146–150. https://doi.org/10.1016/j.tube.2016.10.001
- Sivakumar S., Lucas F.A.S., McDowell T.L. et al. Genomic landscape of atypical adenomatous hyperplasia reveals divergent modes to lung adenocarcinoma // Cancer Res. 2017. V. 77. № 22. P. 6119–6130. https://doi.org/10.1158/0008-5472.CAN-17-1605
- Su S., Ye M.F., Cai X.T. et al. Assessment of anti-PD-(L)1 for patients with coexisting malignant tumor and tuberculosis classified by active, latent, and obsolete stage // BMC Med. 2021. V. 19. № 322. https://doi.org/10.1186/s12916-021-02194-z
- Sung H., Ferlay J., Siegel R.L. et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries // CA: Cancer J. Clin. 2021. V. 71. № 3. P. 209–249. https://doi.org/10.3322/caac.21660
- Tanaka T., Narazaki M., Kishimoto T. IL-6 in inflammation, immunity, and disease // Cold Spring Harb. Perspect. Biol. 2014. V. 6. № a016295. https://doi.org/10.1101/cshperspect.a016295
- Tebruegge M., Dutta B., Donath S. et al. Mycobacteria-specific cytokine responses detect tuberculosis infection and distinguish latent from active tuberculosis // Am. J. Respir. Crit. Care Med. 2015. V. 192. № 4. P. 485–499. https://doi.org/10.1164/rccm.201501-0059OC
- Tezera L.B., Bielecka M.K., Ogongo P. et al. Anti-PD-1 immunotherapy leads to tuberculosis reactivation via dysregulation of TNF-α // eLife. 2020. V. 9. № e52668. https://doi.org/10.7554/eLife.52668
- Thada S., Horvath G.L., Müller M.M. et al. Interaction of TLR4 and TLR8 in the innate immune response against mycobacterium tuberculosis // Int. J. Mol. Sci. 2021. V. 22. № 1560. https://doi.org/10.3390/ijms22041560
- Ting L.M., Kim A.C., Cattamanchi A., Ernst J.D. Mycobacterium tuberculosis Inhibits IFN-γ Transcriptional Responses Without Inhibiting Activation of STAT1 // J. Immunol. 1999. V. 163. № 7. P. 3898–3906.
- Tousif S., Singh Y., Prasad D.V. et al. T cells from programmed death-1 deficient mice respond poorly to mycobacterium tuberculosis infection // PLoS ONE. 2011. V. 6. № e19864. https://doi.org/10.1371/journal.pone.0019864
- Trinath J., Maddur M.S., Kaveri S.V. et al. Mycobacterium tuberculosis Promotes Regulatory T-Cell Expansion via Induction of Programmed Death-1 Ligand 1 (PD-L1, CD274) on Dendritic Cells // J. Infect. Dis. 2012. V. 205. № 4. P. 694–696. https://doi.org/10.1093/infdis/jir820
- Tugues S., Burkhard S.H., Ohs I. et al. New insights into IL-12-mediated tumor suppression // Cell Death Differ. 2015. V. 22. № 2. P. 237–246. https://doi.org/10.1038/cdd.2014.134
- Wang J., Ge P., Qiang L., et al. The mycobacterial phosphatase PtpA regulates the expression of host genes and promotes cell proliferation // Nat. Commun. 2017. V. 8. № 244. https://doi.org/10.1038/s41467-017-00279-z
- Wieland C.W., van der Windt G.J., Wiersinga W.J. et al. CD14 contributes to pulmonary inflammation and mortality during murine tuberculosis // Immunology. 2008. V. 125. № 2. P. 272–279. https://doi.org/10.1111/j.1365-2567.2008.02840.x
- Woo S.J., Kim Y., Jung H. et al. Tuberculous fibrosis enhances tumorigenic potential via the nox4–autophagy axis // Cancers. 2021. V. 13. № 687. https://doi.org/10.3390/cancers13040687
- Xiong K., Sun W., He Y., Fan L. Advances in molecular mechanisms of interaction between Mycobacterium tuberculosis and lung cancer: A narrative review // Transl. Lung Cancer Res. 2021. V. 10. № 10. P. 4012–4026. https://doi.org/10.21037/tlcr-21-465
- Yang R., Yao L., Shen L. et al. IL-12 expands and differentiates human Vγ2Vδ2 T effector cells producing antimicrobial cytokines and inhibiting intracellular mycobacterial growth // Front. Immunol. 2019. V. 10. № 913. https://doi.org/10.3389/fimmu.2019.00913
- Yin W., Tong Z.H., Cui A. et al. PD-1/PD-Ls pathways between CD4+ T cells and pleural mesothelial cells in human tuberculous pleurisy // Tuberculosis (Edinb). 2014. V. 94. № 2. P. 131–139. https://doi.org/10.1016/j.tube.2013.10.007
- Yu Y.Y., Pinsky P.F., Caporaso N.E. et al. Lung cancer risk following detection of pulmonary scarring by chest radiography in the prostate, lung, colorectal, and ovarian cancer screening trial // Arch. Intern. Med. 2008. V. 168. № 21. P. 2326–2332. https://doi.org/10.1001/archinte.168.21.2326
- Zaemes J., Kim C. Immune checkpoint inhibitor use and tuberculosis: a systematic review of the literature // Eur. J. Cancer. 2020. V. 132. P. 168–175. https://doi.org/10.1016/j.ejca.2020.03.015
- Zhao W., Wang L., Wang Y. et al. Injured Endothelial Cell: A Risk Factor for Pulmonary Fibrosis // Int. J. Mol. Sci. 2023. V. 24. № 8749. https://doi.org/10.3390/ijms24108749
- Zhou Y., Hu Z., Cao S. et al. Concomitant Mycobacterium tuberculosis infection promotes lung tumor growth through enhancing Treg development // Oncol. Rep. 2017. V. 38. № 2. P. 685–692. https://doi.org/10.3892/or.2017.5733
- World Health Organization. Global tuberculosis report 2022. URL: https://www.who.int/teams/global-tuberculosis-programme/tb-reports/global-tuberculosis-report-2022 (Accessed 27 Oct 2022).
Дополнительные файлы
