Kinetics of natural-technogenic sulfide decomposition processes as an analogue to exogenous processes at the Degtyarsk deposit. Experimental data

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Рұқсат ақылы немесе тек жазылушылар үшін

Аннотация

To develop economically efficient nature-inspired technologies for processing technogenic-mineral formations of sulfide deposits and rehabilitating altered territories, it is essential to understand the transformation processes of sediment composition, water, and biota interacting within waste dumps and mining excavations (mines and pits). Changes in the composition of technogenic sediments and waters under exogenous conditions are analogous to geological processes of physical-chemical weathering. Among natural processes, freezing and thawing of mineral matter are particularly important. The objective of this study is to investigate the kinetics of destruction and changes in the material composition of sulfide minerals and the resulting aqueous solutions using samples from waste dumps of the Degtyarsk deposit subjected to multiple freeze-thaw cycles. The experimental data include the decomposition of sulfides resistant to hypergenic alteration through a sequence of operations: crushing, sieving crushed dump samples into eight size fractions, and subjecting each fraction to freeze-thaw cycles between −15°C and +20°C in open containers with distilled water (3–15 cycles). In all experiments, pH, redox potential and sample mass were measured. Each fraction was analyzed before and after experiments using a benchtop X-ray diffractometer. Mineral grains were examined via scanning electron microscopy, and the chemical composition of post-experimental water was determined using inductively coupled plasma atomic emission spectrometry (ICP-AES). The most significant changes in sediment composition were observed in the –0.1 mm fraction, the measurement results of which are presented in this study. The maximum mass loss rate of sulfides from the Degtyarsk deposit samples reached 2% per cycle, whereas sulfides from other deposits lost up to 20% of their initial mass per cycle. The primary mass loss in the samples (more than half) was attributed to the mechanical removal of fine particles with water, while a smaller portion resulted from physical-chemical decomposition of sulfides through the formation of iron sulfate crystal hydrates, their dissolution, and carbonate dissolution. These experimental studies will serve as a foundation for building a database on sulfide behavior under cryogenic exposure and subsequently developing nature-inspired technologies for managing mineral matter transformation.

Толық мәтін

Рұқсат жабық

Авторлар туралы

V. Naumov

A.N. Zavaritsky Institute of Geology and Geochemistry, Ural Branch of the Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: Naumov@igg.uran.ru
Ресей, Yekaterinburg

S. Fedorov

Vatolin Institute of Metallurgy, Ural Branch of the Russian Academy of Sciences; Ural State Mining University

Email: Naumov@igg.uran.ru
Ресей, Yekaterinburg; Yekaterinburg

I. Vlasov

Ural State Mining University

Email: Naumov@igg.uran.ru
Ресей, Yekaterinburg

B. Zobnin

Ural State Mining University

Email: Naumov@igg.uran.ru
Ресей, Yekaterinburg

A. Malychev

Ural State Mining University; Ural Federal University named after the first President of Russia B.N. Yeltsin

Email: Naumov@igg.uran.ru
Ресей, Yekaterinburg; Yekaterinburg

M. Glukhov

A.N. Zavaritsky Institute of Geology and Geochemistry, Ural Branch of the Russian Academy of Sciences

Email: Gluhov@igg.uran.ru
Ресей, Yekaterinburg

G. Utkina

Ural State Mining University

Email: Naumov@igg.uran.ru
Ресей, Yekaterinburg

V. Kurmacheva

Ural State Mining University

Email: Naumov@igg.uran.ru
Ресей, Yekaterinburg

Әдебиет тізімі

  1. Vertushkov G.N. Podzemnyye sernokolchedannyye pozhary [Underground sulfide fires]. Sovetskaya geologiya [Soviet Geology]. 1940. № 8. P. 48–56. [In Russian]
  2. Goldyrev V.N., Artemov A.L., Zavodov A.V. Preobrazovaniye sulfidov epitemal’nogo Au-Ag mestorozhdeniya Zhil’noye v usloviyakh kriogeneza [Transformation of sulfides from the Zhilnoye epithermal Au-Ag deposit under cryogenic conditions]. Azimut geonauk: Materialy Vserossiyskoy mezhdistsiplinarnoy molodezhnoy nauchnoy konferentsii [Azimuth of Geosciences: Proceedings of the All-Russian Interdisciplinary Youth Scientific Conference]. 2023. № 3. P. 27–30. [In Russian]
  3. Goldyrev V.N., Osovetskiy B.M., Naumov V.A., Artemov A.L., Zavodov A.V. Pirit epitermal’nogo Au-Ag mestorozhdeniya Zhil’noye (Chukotskiy AO): morfologiya, stadiynost’ obrazovaniya, produkty preobrazovaniya [Pyrite of the epithermal Au-Ag deposit Zhilnoye (Chukotka Autonomous Okrug): morphology, stages of formation, transformation products] // Otechestvennaya geologiya [Domestic Geology]. 2023. № 3. P. 42–56. [In Russian]
  4. Emlin E.F. Tekhnogenez kolchedannykh mestorozhdeniy Urala [Technogenesis of Ural sulfide deposits]. Sverdlovsk: Ural University Press. 1991. [In Russian]
  5. Makarov A.B., Talalay A.G., Khasanova G.G. Geologo-promyshlennyye tipy tekhnogennykh mestorozhdeniy [Geological-industrial types of technogenic deposits]. Vestnik IG Komi NTs UrO RAN [Bulletin of the Institute of Geology, Komi Science Centre, Ural Branch of the Russian Academy of Sciences]. 2018. № 8. P. 80–85. [In Russian]
  6. Miryuk O.A. Perspektivy ispol’zovaniya otkhodov v tekhnologii magnezial’nykh stroitel’nykh materialov [Prospects for using waste in the technology of magnesian building materials]. Nauka i mir [Science and the World]. 2014. № 11–1 (15). P. 41–44. [In Russian]
  7. Naumov V.A., Naumova O.B. Formirovaniye tekhnogenno-mineral’nykh obrazovaniy – novyy etap mineral’nogo razvitiya Zemli [Formation of technogenic-mineral formations as a new stage in Earth’s mineral evolution]. Geologiya i poleznyye iskopayemyye Zapadnogo Urala [Geology and Mineral Resources of the Western Urals]. 2022. 5. № 42. P. 69–72. [In Russian]
  8. Naumov V.A., Naumova O.B., Bryukhov V.N., Goldyrev V.V., Goldyrev V.N., Plyusnina K.I. Prirodopodobnyye tekhnologii na puti osvoyeniya tekhnogenno-mineral’nykh obrazovaniy [Nature-like technologies in the development of technogenic-mineral formations]. Problemy mineralogii, petrografii i metallogenii. Nauchnyye chteniya pamyati P.N. Chirvinskogo [Problems of Mineralogy, Petrography, and Metallogeny. Scientific Readings in Memory of P.N. Chirvinsky]. 2022. № 25. P. 181–187. [In Russian]
  9. Naumov V.A., Khusainova A.Sh. Vliyaniye sezonnogo promorazhivaniya i progrevaniya sulfidov na chastitsy zolota v tekhnogenno-mineral’nykh obrazovaniyakh [The effect of seasonal freezing and heating of sulfides on gold particles in technogenic-mineral formations]. Sbornik dokladov Devyatogo mezhdunarodnogo kongressa “Tsvetnyye metally i mineraly – 2017” [Proceedings of the Ninth International Congress “Non-Ferrous Metals and Minerals – 2017”]. 2017. P. 942–951. [In Russian]
  10. Petrov G.V., Boduen A.Ya., Mardar I.I., Ivanov B.S., Boginskaya A.S. Resursy blagorodnykh metallov v tekhnogennykh ob”yektakh gorno-metallurgicheskogo kompleksa Rossii [Resources of noble metals in technogenic objects of Russia’s mining and metallurgical complex]. Uspekhi sovremennogo yestestvoznaniya [Advances in Current Natural Sciences]. 2013. № 3. P. 145–148. [In Russian]
  11. Pitulko V.M. Migratsiya khimicheskikh elementov v kriogeneze [Migration of chemical elements in cryogenesis]. Novosibirsk: Nauka. 1985. P. 21–40. [In Russian]
  12. Ptitsyn A.B. Geokhimicheskiye osnovy geotekhnologii metallov v usloviyakh merzloty [Geochemical foundations of metal geotechnology in permafrost conditions]. Novosibirsk: Nauka. 1992. [In Russian]
  13. Ptitsyn A.B., Abramova V.A., Markovich T.I. Spetsifika kriogeokhimicheskikh protsessov v zone tekhnogeneza [Specifics of cryogeochemical processes in the technogenic zone]. Mineralogiya tekhnogeneza [Mineralogy of Technogenesis]. 2009. № 10. P. 215–217. [In Russian]
  14. Rabinovich V.A., Khavin Z.Ya. Kratkiy khimicheskiy spravochnik [Concise Chemical Handbook]. Leningrad: Khimiya. 1977. [In Russian]
  15. Fedorov S.A., Amdur A.M., Malyshev A.N., Karimova P.F. Obzor tekhnogennykh i vtorichnykh zolotosoderzhashchikh otkhodov i sposoby izvlecheniya iz nikh zolota [Review of technogenic and secondary gold-containing wastes and methods of gold extraction from them]. Gornyy informatsionno-analiticheskiy byulleten’ [Mining Informational and Analytical Bulletin]. 2021. 11. № 31. P. 346–365. [In Russian]
  16. Chesnokov B.V., Shcherbakova E.P. Mineralogiya gorelykh otvalov Chelyabinskogo ugol’nogo basseyna [Mineralogy of burnt dumps of the Chelyabinsk coal basin]. Moscow: Nauka. 1991. [In Russian]
  17. Shadrunova I.V., Gorlova O.E., Provаlov S.A. Adaptivnyye metody doizvlecheniya zolota iz khvostokhranilishch zolotoizvlekayushchikh fabrik [Adaptive methods for additional gold extraction from tailings of gold recovery plants]. Gornyy informatsionno-analiticheskiy byulleten’ [Mining Informational and Analytical Bulletin]. 2011. № 9. P. 180–185. [In Russian]
  18. Yurak V.V., Usmanov A.I. Vosstanovleniye narushennykh zemel’ v gornykh ekosistemakh [Restoration of disturbed lands in mountain ecosystems]. Ustoychivoye razvitiye gornykh territoriy [Sustainable Development of Mountain Territories]. 2023. 15. № 4. P. 901–911. [In Russian]
  19. Altomare A., Corriero N., Cuocci C., Falcicchio A., Moliterni A., Rizzi R. EXPO software for solving crystal structures by powder diffraction data: methods and application // J. Appl. Crystallography. 2015. 48. P. 598‒603.
  20. Bennett J.W. Comarmond M.J., Jeffery J.J. Comparison of oxidation rates of sulfidic mine wastes measured in the laboratory and field. Kenmore, Australia. 2000.
  21. Evangelou V.P., Zhang Y.L. A review: Pyrite oxidation mechanisms and acid mine drainage prevention // Critical Reviews in Environmental Science and Technology. 1995. 2 (25). P. 141–199.
  22. Gleisner M., Herbert J.R.B. Sulfide mineral oxidation in freshly processed tailings: batch experiments // Journal of Geochemical Exploration. 2002. 3 (76). P. 139–153.
  23. Komnitsas K., Xenidis A., Adam K. Oxidation of pyrite and arsenopyrite in sulphidic spoils in Lavrion // Minerals Engineering. 1995. 8. № 12. P. 1443 – 1454.
  24. Lindsay M.B., Moncur M.C., Bain J.G., Jambor J.L., Ptacek C.J., Blowes D.W. Geochemical and mineralogical aspects of sulfide mine tailings // Applied Geochemistry. 2015. 57. P. 157–177.
  25. Lottermoser B., Lottermoser B.G. Sulfidic Mine Wastes // Mine Wastes Charact. Treat. Env. Impacts. 2010. P. 43–117.
  26. Nordstrom D.K., Southam G. Geomicrobiology of sulfide mineral oxidation, in: geomicrobiology: Interactions between Microbes and Minerals // Reviews Mineralogy. 1997. 35. P. 361–390.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Crushed sulfide (fraction – 0.1 mm): a – initial; b – after 3 freezing cycles; c – after 15 freezing cycles. Py – pyrite; Q – quartz; Mu – muscovite; Ba – barite. The images were taken in BSE mode.

Жүктеу (447KB)
3. Fig. 2. Crushed sulfide (fraction –0.5+0.25 mm): 1 – initial; 2 – after 6 freezing cycles. Py – pyrite; Mu – muscovite; Ba – barite. The images were taken in BSE mode.

Жүктеу (513KB)
4. Fig. 3. Graphs (cumulative) of the dependence of the change in the mass of sulfides on the number of freeze-thaw cycles for different fractions: 1 - less than 0.1 mm; 2 - from 0.1 to 0.25 mm; 3 - from 0.25 to 0.5 mm; 4 - from 0.5 to 1 mm; 5 - from 1 to 2 mm; 6 - from 2 to 5 mm; 7 - from 5 to 10 mm; 8 - more than 10 mm.

Жүктеу (104KB)

© Russian Academy of Sciences, 2025