Reactions of carbon dioxide bound to aluminum diimine hydride with borane dimethyl sulfide and ammonia
- Autores: Moskalev M.V.1, Skatova A.A.1, Bazanov A.А.1, Baranov E.V.1, Fedushkin I.L.1
 - 
							Afiliações: 
							
- Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences
 
 - Edição: Volume 50, Nº 3 (2024)
 - Páginas: 174-186
 - Seção: Articles
 - URL: https://vietnamjournal.ru/0132-344X/article/view/667611
 - DOI: https://doi.org/10.31857/S0132344X24030031
 - EDN: https://elibrary.ru/NSSAKH
 - ID: 667611
 
Citar
Texto integral
Resumo
The reaction of aluminum bis-formate acenaphthene-1,2-diimine complex [(ArBIG-bian)Al(μ-OC(H)O)2Li(Thf)2] (I) (ArBIG-bian = 1,2-bis[(2,6-dibenzhydryl-4-methylphenyl)imino]acenaphthene), prepared by binding carbon dioxide by aluminum diimine hydride [(ArBIG-bian)Al(H)2]–[Li(Thf)4]+, with borane dimethyl sulfide and ammonia was studied. The reaction of I with BH3∙SMe2 (1 : 1) in toluene affords the product of hydroboration of one formate group [(ArBIG-bian)Al(μ-OC(H)O)(OB(H)OCH3)Li(Thf)]2 (II), while the reaction of I with BH3∙SMe2 (1 : 2) is accompanied by reduction of both formate groups and gives complex [(ArBIG-bian)Al(OBOCH3)2OLi2(Thf)2BH4]2 (III), methoxyboroxine (CH3OBO)3 and, presumably, compound [(ArBIG-bian)AlOCH3]. The reaction of I with one equivalent of ammonia in THF gives adduct [(ArBIG-bian)Al(NH3)(μ-OC(H)O)2Li(Thf)2] (IV), in which ammonia is coordinated to the aluminum atom, while the key bonds in I have not undergone ammonolysis. Compounds II–IV were characterized by IR and NMR spectroscopy, elemental analysis, and X-ray diffraction (CCDC no. 2255017 (II), 2255018 (III), 2255019 (IV)).
Palavras-chave
Texto integral
Sobre autores
M. Moskalev
Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences
														Email: skatova@iomc.ras.ru
				                					                																			                												                	Rússia, 							Nizhny Novgorod						
A. Skatova
Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences
							Autor responsável pela correspondência
							Email: skatova@iomc.ras.ru
				                					                																			                												                	Rússia, 							Nizhny Novgorod						
A. Bazanov
Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences
														Email: skatova@iomc.ras.ru
				                					                																			                												                	Rússia, 							Nizhny Novgorod						
E. Baranov
Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences
														Email: skatova@iomc.ras.ru
				                					                																			                												                	Rússia, 							Nizhny Novgorod						
I. Fedushkin
Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences
														Email: skatova@iomc.ras.ru
				                					                																			                												                	Rússia, 							Nizhny Novgorod						
Bibliografia
- Lamb W.F., Wiedmann T., Pongratz J. et al. // Environ. Res. Lett. 2021. V. 16. P. 073005.
 - Liu Q., Wu L., Jackstell R. et al. // Nat. Commun. 2015. V. 6. P. 5933.
 - Wang W.-H., Himeda Y., Muckerman J.T. et al. // Chem. Rev. 2015. V. 115. № 23. P. 12936.
 - Wang W.-H., Feng X., Bao M. Transformation of Carbon Dioxide to Formic Acid and Methanol. SpringerBriefs in Molecular Science, Springer Nature, Switzerland AG, 2018. 128 p.
 - Ye R.-P., Ding J., Gong W. et al. // Nat. Commun. 2019. V. 10. P. 5698.
 - Zhang Y., Zhang T., Das S. // Green Chem. 2020. V. 22. P. 1800.
 - Ren M., Zhang Y., Wang X. et. al. // Catalysts 2022. V. 12. P. 403.
 - Navarro M., Sánchez-Barba L.F., Garcés A. et al. // Catal. Sci. Technol. 2020. V. 10. P. 3265.
 - Laiwattanapaisarn N., Virachotikul A., Phomphrai K. // Dalton Trans. 2021. V. 50. P. 11039.
 - Yepes Y.R., Mesías-Salazar Á., Becerra A. et al. // Organometallics. 2021. V. 40. P. 2859.
 - Saltarini S., Villegas-Escobar N., Martínez J. et al. // Inorg. Chem. 2021. V. 60. P. 1172.
 - Rauch M., Parkin G. // J. Am. Chem. Soc. 2017. V. 139. P. 18162.
 - Rauch M., Strater Z., Parkin G. // J. Am. Chem. Soc. 2019. V. 141. P. 17754.
 - Huang W., Roisnel T., Dorcet V. et al. // Organometallics. 2020. V. 39. P. 698.
 - Caise A., Hicks J., Fuentes M.A. et al. // Chem. Eur. J. 2021. V. 27. P. 2138.
 - Anker M.D., Arrowsmith M., Bellham P. et al. // Chem. Sci. 2014. V. 5. P. 2826.
 - Yan B., Dutta S., Ma X. et al. // Dalton Trans. 2022. V. 51. P. 6756.
 - Abdalla J.A.B., Riddlestone I.M., Tirfoin R. et al. // Angew. Chem. Int. Ed. 2015. V. 54. P. 5098.
 - Franz D., Jandl C., Stark C. et al. // ChemCatChem. 2019. V. 11. P. 5275.
 - Chia C.-C., Teo Y.-C., Cham N. et al. // Inorg. Chem. 2021. V. 60. P. 4569.
 - Caise A., Jones D., Kolychev E.L. et al. // Chem. Eur. J. 2018. V. 24. 13624.
 - Sokolov V.G., Koptseva T.S., Moskalev M.V. et al. // Russ. Chem. Bull. 2017. V. 66. № 9. P. 1569. https://doi.org/10.1007/s11172-017-1926-1
 - Moskalev M.V., Razborov D.A., Bazanov A.A. et al. // Mendeleev Commun. 2020. V. 30. P. 94.
 - Koptseva T.S., Moskalev M.V., Skatova A.A. et al. // Inorg. Chem. 2022. V. 61. P. 206.
 - Moskalev M.V., Sokolov V.G., Koptseva T.S. et al. // J. Organomet. Chem. 2021. V. 949. P. 121972.
 - Koptseva T.S., Moskalev M.V., Skatova A.A. et al. // Russ. Chem. Bull. 2022. V. 71. № 8. P. 1626. https://doi.org/10.1007/s11172-022-3571-6
 - Koptseva T.S., Skatova A.A., Ketkov S.Y. et al. // Organometallics. 2023. V. 42. P. 123.
 - Guzmán J., Torguet A., García-Orduña P. et al. // J. Organomet. Chem. 2019. V. 897. P. 50.
 - Li Z., Yu Z., Luo X. et al. // RSC Adv. 2020. V. 10. P. 33972.
 - Lin S., Liu J., Ma L. // J. CO2 Util. 2021. V. 54. P. 101759.
 - Zhai G., Liu Q., Ji J. et al. // J. CO2 Util. 2022. V. 61. P. 102052.
 - APEX3. Bruker Molecular Analysis Research Tool. Version 2018.7-2. Madison (WI, USA): Bruker AXS Inc., 2018.
 - SAINT. Data Reduction and Correction Program. Version 8.38A. Madison (WI, USA): Bruker AXS Inc., 2017.
 - Krause L., Herbst-Irmer R., Sheldrick G.M., Stalke D. // J. Appl. Cryst. 2015. V. 48. P. 3.
 - Sheldrick G.M. // Acta Crystallogr. A. 2015. V. 71. P. 3.
 - Sheldrick G.M. SHELXTL. Version 6.14. Structure Determination Software Suite. Madison (WI, USA): Bruker AXS, 2003.
 - Sheldrick G.M. // Acta Crystallogr. C. 2015. V. 71. P. 3.
 - Sheldrick G.M. SADABS. Version 2016/2. Bruker/Siemens Area Detector Absorption Correction Program. Madison (WI, USA): Bruker AXS, 2016.
 - Leong B.-X., Lee J., Li Y. et al. // J. Am. Chem. Soc. 2019. V. 141. P. 17629.
 - Saxena P., Thirupathi N. // Polyhedron. 2015. V. 98. P. 238.
 - Lago A.B., Carballo R., Lezama L. et al. // J. Solid State Chem. 2015. V. 231. P. 145.
 - Yang L., Powell D.R., Houser R.P. // Dalton Trans. 2007. P. 955.
 - Ruiz J.C.G., Nöth H., Warchhold M. // Eur. J. Inorg. Chem. 2008. P. 251.
 - Yang Z., Ma X., Oswald R.B. et al. // J. Am. Chem. Soc. 2006. V. 128. P. 12406.
 - Ma X., Yang Z., Wang X. et al. // Inorg. Chem. 2011. V. 50. P. 2010.
 - Ma X., Zhong M., Liu Z. et al. // Z. Kristallogr. NCS. 2012. V. 227. P. 580.
 - Yang Z., Hao P., Liu Z. et al. // J. Organomet. Chem. 2014. V. 751. P. 788.
 
Arquivos suplementares
				
			
						
						
					
						
						
									









