Comparison of DNA analysis on biochips with brush polymer cells and cross-linked polymer cells
- 作者: Miftakhov R.A.1, Shtylev G.F.1, Shishkin I.Y.1, Shershov V.Е.1, Kuznetsova V.E.1, Surzhikov S.A.1, Vasiliskov V.A.1, Zasedateleva О.А.1, Ikonnikova А.Y.1, Nasedkina Т.V.1, Chudinov A.V.1
-
隶属关系:
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences
- 期: 卷 51, 编号 3 (2025)
- 页面: 444-450
- 栏目: ОБЗОРНАЯ СТАТЬЯ
- URL: https://vietnamjournal.ru/0132-3423/article/view/686962
- DOI: https://doi.org/10.31857/S0132342325030078
- EDN: https://elibrary.ru/KQHEUR
- ID: 686962
如何引用文章
详细
The regulation of substrate surface properties in biochip technology opens the possibility of optimizing platforms for efficient biomolecule recognition. The research is aimed at exploring the use of brush polymers to improve the sensitivity and speed of DNA analysis on biochips. Brush polymer cells for biochips were prepared by UV-initiated polymerization of monomers from the surface on polyethylene terephthalate substrates. Cross-linked hydrogel polymer cells for biochips were prepared on polybutylene terephthalate substrates by copolymerization of gel components with DNA probes. The probes in brush polymer cells were immobilized through activated carboxyl groups. A single-stranded DNA target with a length of 124 nucleotides corresponding to the 7th exon of the human ABO gene was used for hybridization analysis. Hybridization of the DNA target was studied on biochips with cells made of brush polymers and cross-linked polyacrylamide hydrogels. The results of hybridization analysis on biochips were evaluated by digital fluorescence microscopy. Higher intensity of fluorescence signals and higher ratio of signals of cells with perfect duplexes to those of cells with imperfect duplexes were observed in cells from brush polymers compared to cells from 3D cross-linked polymers. Achievement of hybridization signal up to 90% of saturation occurred in the same time in both cell types. The relevance of this work stems from the need for highly accurate and efficient diagnostic methods to analyze biomolecules with minimal time and reagent consumption. The development of biochips based on brush polymers will increase the accuracy and sensitivity of molecular studies, which is especially important for early diagnosis of diseases.
全文:

作者简介
R. Miftakhov
Engelhardt Institute of Molecular Biology, Russian Academy of Sciences
编辑信件的主要联系方式.
Email: mr.miftahov20@yandex.ru
俄罗斯联邦, ul. Vavilova 32/1, Moscow, 119991 Russia
G. Shtylev
Engelhardt Institute of Molecular Biology, Russian Academy of Sciences
Email: mr.miftahov20@yandex.ru
俄罗斯联邦, ul. Vavilova 32/1, Moscow, 119991 Russia
I. Shishkin
Engelhardt Institute of Molecular Biology, Russian Academy of Sciences
Email: mr.miftahov20@yandex.ru
俄罗斯联邦, ul. Vavilova 32/1, Moscow, 119991 Russia
V. Shershov
Engelhardt Institute of Molecular Biology, Russian Academy of Sciences
Email: mr.miftahov20@yandex.ru
俄罗斯联邦, ul. Vavilova 32/1, Moscow, 119991 Russia
V. Kuznetsova
Engelhardt Institute of Molecular Biology, Russian Academy of Sciences
Email: mr.miftahov20@yandex.ru
俄罗斯联邦, ul. Vavilova 32/1, Moscow, 119991 Russia
S. Surzhikov
Engelhardt Institute of Molecular Biology, Russian Academy of Sciences
Email: mr.miftahov20@yandex.ru
俄罗斯联邦, ul. Vavilova 32/1, Moscow, 119991 Russia
V. Vasiliskov
Engelhardt Institute of Molecular Biology, Russian Academy of Sciences
Email: mr.miftahov20@yandex.ru
俄罗斯联邦, ul. Vavilova 32/1, Moscow, 119991 Russia
О. Zasedateleva
Engelhardt Institute of Molecular Biology, Russian Academy of Sciences
Email: mr.miftahov20@yandex.ru
俄罗斯联邦, ul. Vavilova 32/1, Moscow, 119991 Russia
А. Ikonnikova
Engelhardt Institute of Molecular Biology, Russian Academy of Sciences
Email: mr.miftahov20@yandex.ru
俄罗斯联邦, ul. Vavilova 32/1, Moscow, 119991 Russia
Т. Nasedkina
Engelhardt Institute of Molecular Biology, Russian Academy of Sciences
Email: mr.miftahov20@yandex.ru
俄罗斯联邦, ul. Vavilova 32/1, Moscow, 119991 Russia
A. Chudinov
Engelhardt Institute of Molecular Biology, Russian Academy of Sciences
Email: mr.miftahov20@yandex.ru
俄罗斯联邦, ul. Vavilova 32/1, Moscow, 119991 Russia
参考
- Donatin E., Drancourt M. // Méd. Maladies Infect. 2012. V. 42. P. 453–459. https://doi.org/10.1016/j.medmal.2012.07.017
- Иконникова А.Ю., Яценко Ю.Е., Кременецкая О.С., Виноградова О.Ю., Фесенко Д.О., Абрамов И.С., Овсепян В.А., Наседкина Т.В. // Мол. биология. 2016. Т. 50. С. 474–479. https://doi.org/10.7868/S0026898416020087
- Baum M., Bielau S., Rittner N., Schmid K., Eggelbusch K., Dahms M., Schlauersbach A., Tahedl H., Beier M., Guimil R., Scheffer M., Hermann C., Funk J.-M., Wixmerten A., Rebscher H., Honig M., Andreae C., Buchner D., Moschel E., Glathe A., Jager E., Thom M., Greil A., Bestvater F., Obermeier F., Burgmaier J., Thome K., Weichert S., Hein S., Binnewies T., Foitzik V., Muller M., Stahler C.F., Stahler P.F. // Nucleic Acids Res. 2003. V. 31. P. e151. https://doi.org/10.1093/nar/gng151
- Ravan H., Kashanian S., Sanadgol N., BadoeiDalfard A., Karami Z. // Anal. Biochem. 2014. V. 444. P. 41–46. https://doi.org/10.1016/j.ab.2013.09.032
- Traeger J.C., Lamberty Z., Schwartz D.K. // ACS Nano. 2019. V. 13. P. 7850–7859. https://doi.org/10.1021/acsnano.9b02157
- Sethi D., Gandhi R.P., Kumar P., Gupta K.C. // Biotechnol. J. 2009. V. 4. P. 1513–1529. https://doi.org/10.1002/biot.200900162
- Miftakhov R.A., Lapa S.A., Kuznetsova V.E., Zolotov A.M., Vasiliskov V.A., Shershov V.E., Surzhikov S.A., Zasedatelev A.S., Chudinov A.V. // Russ. J. Bioorg. Chem. 2021. V. 47. P. 1345–1347. https://doi.org/10.1134/S1068162021060182
- Wu Y., Lai R.Y. // Anal. Chem. 2014. V. 86. P. 8888– 8895. https://doi.org/10.1021/ac5027226
- Guschin D., Yershov G., Zaslavsky A., Gemmell A., Shick V., Proudnikov D., Arenkov P., Mirzabekov A. // Anal. Biochem. 1997. V. 250. P. 203–211. https://doi.org/10.1006/abio.1997.2209
- Rubina A.Yu., Pan’kov S.V., Dementieva E.I., Pen’kov D.N., Butygin A.V., Vasiliskov V.A., Chudinov A.V., Mikheikin A.L., Mikhailovich V.M., Mirzabekov A.D. // Anal. Biochem. 2004. V. 325. P. 92–106. https://doi.org/10.1016/j.ab.2003.10.010
- Sandrin D., Wagner D., Sitta C.E., Thoma R., Felekyan S., Hermes H.E., Janiak C., de Sousa Amadeu N., Kühnemuth R., Löwen H., Egelhaaf S.U., Seidel C.A.M. // Phys. Chem. Chem. Phys. 2016. V. 18. P. 12860–12876. https://doi.org/10.1039/C5CP07781H
- Olivier A., Meyer F., Raquez J.-M., Damman P., Dubois P. // Progr. Polym. Sci. 2012. V. 37. P. 157–181. https://doi.org/10.1016/j.progpolymsci.2011.06.002
- Demirci S., Caykara T. // Mater. Sci. Eng. C. Mater. Biol. Appl. 2013. V. 33. P. 111–120. https://doi.org/10.1016/j.msec.2012.08.015
- Shtylev G.F., Shishkin I.Yu., Shershov V.E., Kuznetsova V.E., Kachulyak D.A., Butvilovskaya V.I., Levashova A.I., Vasiliskov V.A., Zasedateleva O.A., Chudinov A.V. // Russ. J. Bioorg. Chem. 2024. V. 50. P. 2036–2049. https://doi.org/10.1134/S1068162024050339
- Cimen D., Caykara T. // Polym. Chem. 2015. V. 6. P. 6812–6818. https://doi.org/10.1039/C5PY00923E
- Miftakhov R.A., Ikonnikova A.Yu., Vasiliskov V.A., Lapa S.A., Levashova A.I., Kuznetsova V.E., Shershov V.E., Zasedatelev A.S., Nasedkina T.V., Chudinov A.V. // Russ. J. Bioorg. Chem. 2023. V. 49. P. 1143–1150. https://doi.org/10.1134/S1068162023050217
- Wang C., Yan Q., Liu H.-B., Zhou X.-H., Xiao S.-J. // Langmuir. 2011. V. 27. P. 12058–12068. https://doi.org/10.1021/la202267p
- Lapa S.A., Klochikhina E.S., Miftakhov R.A., Zasedatelev A.S, Chudinov A.V. // Russ. J. Bioorg. Chem. 2021. V. 47. P. 1122–1125. https://doi.org/10.1134/S1068162021050290
- Wei Q., Liu S., Huang J., Mao X., Chu X., Wang Y., Qiu M. Y., Mao Y., Xie Y., Li Y. // J. Biochem. Mol. Biol. 2004. V. 37. P. 439–444. https://doi.org/10.5483/BMBRep.2004.37.4.439
补充文件
