Определение мутаций промотора гена TERT в образцах глиом методом аллель-специфичной гибридизации на биологическом микрочипе

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Соматические мутации в промоторе гена обратной транскриптазы теломеразы (TERT) могут вызывать реактивацию фермента теломеразы, что стимулирует неопластические процессы в организме. Наиболее часто мутации C228T и C250T промотора гена TERT (TERTp) обнаруживают в глиомах головного мозга, для которых они выступают важными диагностическими и прогностическими маркерами. Для определения мутаций TERTp разработан подход, включающий амплификацию участка промотора и последующую гибридизацию c иммобилизованными зондами на биологическом микрочипе (биочипе). С использованием данного подхода проведено исследование мутационного статуса TERTp в 94 образцах глиом (астроцитома, олигодендроглиома, глиобластома). Для верификации результатов генотипирования использовали данные таргетного секвенирования на платформе Illumina и прямого секвенирования по Сэнгеру. Всего мутации TERTp были обнаружены в 62 из 94 образцов (66%), наиболее часто у пациентов с глиобластомой (71%). Мутация C228T (69%) встречалась значительно чаще по сравнению с мутацией C250T (31%). Результаты апробации биочипа на коллекции клинических образцов показывают, что он может быть использован в качестве удобного и надежного диагностического инструмента при генетическом анализе опухолей ЦНС.

Полный текст

Доступ закрыт

Об авторах

В. О. Варачев

ФГБУН “Институт молекулярной биологии им. В.А. Энгельгардта” РАН

Email: tanased06@rambler.ru
Россия, 119991 Москва, ул. Вавилова, 32

И. O. Баринова

ФГБУН “Институт молекулярной биологии им. В.А. Энгельгардта” РАН

Email: tanased06@rambler.ru
Россия, 119991 Москва, ул. Вавилова, 32

О. Ю. Сусова

ФГБУ “Национальный медицинский исследовательский центр онкологии им. Н.Н. Блохина” Минздрава России

Email: tanased06@rambler.ru
Россия, 115548 Москва, Каширское шоссе, 23

А. А. Митрофанов

ФГБУ “Национальный медицинский исследовательский центр онкологии им. Н.Н. Блохина” Минздрава России

Email: tanased06@rambler.ru
Россия, 115548 Москва, Каширское шоссе, 23

С. А. Суржиков

ФГБУН “Институт молекулярной биологии им. В.А. Энгельгардта” РАН

Email: tanased06@rambler.ru
Россия, 119991 Москва, ул. Вавилова, 32

И. В. Гречишникова

ФГБУН “Институт молекулярной биологии им. В.А. Энгельгардта” РАН

Email: tanased06@rambler.ru
Россия, 119991 Москва, ул. Вавилова, 32

А. С. Заседателев

ФГБУН “Институт молекулярной биологии им. В.А. Энгельгардта” РАН

Email: tanased06@rambler.ru
Россия, 119991 Москва, ул. Вавилова, 32

А. В. Чудинов

ФГБУН “Институт молекулярной биологии им. В.А. Энгельгардта” РАН

Email: tanased06@rambler.ru
Россия, 119991 Москва, ул. Вавилова, 32

Т. В. Наседкина

ФГБУН “Институт молекулярной биологии им. В.А. Энгельгардта” РАН

Автор, ответственный за переписку.
Email: tanased06@rambler.ru
Россия, 119991 Москва, ул. Вавилова, 32

Список литературы

  1. Jafri M.A., Ansari S.A., Alqahtani M.H., Shay J.W. // Genome Med. 2016. V. 8. P. 69. https://doi.org/10.1186/s13073-016-0324-x
  2. Gupta S., Vanderbilt C.M., Lin Y.T., Benhamida J.K., Jungbluth A.A., Rana S., Momeni-Boroujeni A., Chang J.C., Mcfarlane T., Salazar P., Mullaney K., Middha S., Zehir A., Gopalan A., Bale T.A., Ganly I., Arcila M.E., Benayed R., Berger M.F., Ladanyi M., Dogan S. // J. Mol. Diagn. 2021. V. 23. P. 253–263. https://doi.org/10.1016/j.jmoldx.2020.11.003
  3. Hafezi F., Perez Bercoff D. // Cells. 2020. V. 9. P. 749. https://doi.org/10.3390/cells9030749
  4. Louis D.N., Perry A., Wesseling P., Brat D.J., Cree I.A., Figarella-Branger D., Hawkins C., Ng H.K., Pfister S.M., Reifenberger G., Soffietti R., von Deimling A., Ellison D.W. // Neuro Oncol. 2021. V. 23. P. 1231– 1251. https://doi.org/10.1093/neuonc/noab106
  5. Hasanau T., Pisarev E., Kisil O., Nonoguchi N., Le Calvez-Kelm F., Zvereva M. // Biomedicines. 2022. V. 10. P. 728. https://doi.org/10.3390/biomedicines10030728
  6. Diplas B.H., Liu H., Yang R., Hansen L.J., Zachem A.L., Zhao F., Bigner D.D., McLendon R.E., Jiao Y., He Y., Waitkus M.S., Yan H. // Neuro Oncol. 2019. V. 21. P. 440–450. https://doi.org/10.1093/neuonc/noy167
  7. Fujioka Y., Hata N., Akagi Y., Kuga D., Hatae R., Sangatsuda Y., Michiwaki Y., Amemiya T., Takigawa K., Funakoshi Y., Sako A., Iwaki T., Iihara K., Mizoguchi M. // J. Neurooncol. 2021. V. 152. P. 47–54. https://doi.org/10.1007/s11060-020-03682-7
  8. Adachi J.I., Shirahata M., Suzuki T., Mishima K., Uchida E., Sasaki A., Nishikawa R. // Brain Tumor Pathol. 2021. V. 38. P. 201–209. https://doi.org/10.1007/s10014-021-00403-4
  9. Zacher A., Kaulich K., Stepanow S., Wolter M., Köhrer K., Felsberg J., Malzkorn B., Reifenberger G. // Brain Pathol. 2017. V. 27. P. 146–159. https://doi.org/10.1111/bpa.12367
  10. Varachev V.O., Guskov D.A., Shekhtman A.P., Rogozhin D.V., Polyakov S.A., Zacedatelev A.S., Chudinov A.V., Nasedkina T.V. // Russ. J. Bioorg. Chem. 2023. V. 49. P. 1137–1142. https://doi.org/10.1134/s1068162023050205
  11. Иконникова А.Ю., Шершов В.Е., Мороз Ю.В., Василисков В.А., Лапа С.А., Мифтахов Р.А., Кузнецова В.Е., Чудинов А.В., Наседкина Т.В. // Биофизика. 2021. Т. 6. С. 31–39. https://doi.org/10.31857/S000630292101004X
  12. Yuan Y., Qi C., Maling G., Xiang W., Yanhui L., Ruofei L., Yunhe M., Jiewen L., Qing M. // J. Clin. Neurosci. 2016. V. 26. P. 57–62. https://doi.org/10.1016/j.jocn.2015.05.066
  13. Huang D.S., Wang Z., He X.J., Diplas B.H., Yang R., Killela P.J., Meng Q., Ye Z.Y., Wang W., Jiang X.T., Xu L., He X.L., Zhao Z.S., Xu W.J., Wang H.J., Ma Y.Y., Xia Y.J., Li L., Zhang R.X., Jin T., Zhao Z.K., Xu J., Yu S., Wu F., Liang J., Wang S., Jiao Y., Yan H., Tao H.Q. // Eur. J. Cancer. 2015. V. 51. P. 969–976. https://doi.org/10.1016/j.ejca.2015.03.010
  14. Hewer E., Phour J., Gutt-Will M., Schucht P., Dettmer M.S., Vassella E.J. // Neuropathol. Exp. Neurol. 2020. V. 79. P. 430–436. https://doi.org/10.1093/jnen/nlaa004
  15. Li J., Han Z., Ma C., Chi H., Jia D., Zhang K., Feng Z., Han B., Qi M., Li G., Li X., Xue H. // Ann. Clin. Transl. Neurol. 2024. V. 11. P. 2176–2187. https://doi.org/10.1002/acn3.52138
  16. Варачев В.О., Сусова О.Ю., Митрофанов А.А., Краснов Г.С., Насхлеташвили Д.Р., Аммур Ю.И., Бежанова С.Д., Севян Н.В., Прозоренко Е.В., Бекяшев А.Х., Наседкина Т.В. // Усп. мол. онкологии. 2024. Т. 11. С. 68–78. https://doi.org/10.17650/2313-805X-2024-11-3-68-78
  17. Краснов Г.С., Гукасян Л.Г., Абрамов И.С., Наседкина Т.В. // Мол. биология. 2021. Т. 5. С. 829–845. https://doi.org/10.31857/S0026898421050050

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Структура промотора гена TERT. Замена нуклеотида C>T происходит в положении –146 (C250T) или в положении –124 (C228T) перед сайтом инициации трансляции (ATG), что приводит к образованию новых сайтов связывания транскрипционных факторов семейства E-26 (ETS, E-26 transformation-specific); 1 – участок инициации транскрипции, 2 – кодирующая последовательность гена TERT. Образование новых сайтов связывания факторов транскрипции приводит к повышению уровня транскрипции мРНК в 2–4 раза.

Скачать (474KB)
3. Рис. 2. Определение мутаций в промоторе гена TERT в образцах глиальных опухолей: в верхней части рисунка представлены гибридизационные картины на биочипе, в нижней части – нормированные значения сигналов флуоресценции. (а) – Образец с генотипом дикого типа; (б) – образец с мутацией C250T в гетерозиготном состоянии; (в) – образец с мутацией C228T в гетерозиготном состоянии. Флуоресцентные сигналы ячеек биочипа регистрировали с помощью анализатора биочипов при возбуждении 760 ± 25 нм и регистрации 810–830 нм (Cy7). M – ячейка, содержащая флуоресцентный краситель Cy5, wt – дикий тип, mut – мутация.

4. Рис. 3. Определение мутаций в промоторе гена TERT методом прямого секвенирования по Сэнгеру. Вверху последовательность дикого типа, внизу последовательность с мутацией в гетерозиготном состоянии. (а) – Мутация C250T, (б) – мутация C228T.

Скачать (676KB)

© Российская академия наук, 2025