On a New Type of Unitoid Matrices
- Autores: Ikramov K.D.1
-
Afiliações:
- Faculty of Computational Mathematics and Cybernetics, Moscow Lomonosov State University
- Edição: Volume 63, Nº 6 (2023)
- Páginas: 891-895
- Seção: General numerical methods
- URL: https://vietnamjournal.ru/0044-4669/article/view/664827
- DOI: https://doi.org/10.31857/S0044466923060091
- EDN: https://elibrary.ru/UYPHCY
- ID: 664827
Citar
Resumo
The cosquare of a nonsingular complex matrix A is defined as A in theory of A-congruences and as A in theory of Hermitian congruences. There is one more product of a similar kind, namely, A. In this paper, we discuss the following question: Is it possible to interpret such a product as a cosquare within some theory of congruences? What is this theory and how does look its canonical form?
Palavras-chave
Sobre autores
Kh. Ikramov
Faculty of Computational Mathematics and Cybernetics, Moscow Lomonosov State University
Autor responsável pela correspondência
Email: ikramov@cs.msu.su
Moscow, Russia
Bibliografia
- Horn R.A., Sergeichuk V.V. A regularization algorithm for bilinear and sesquilinear forms // Linear Algebra Appl. 2006. V. 412. P. 380–395.
- Икрамов Х.Д. О конгруэнтном выделении жордановых блоков из вырожденной квадратной матрицы // Сиб. журнал вычисл. матем. 2018. Т. 21. С. 255–258.
- Horn R.A., Johnson C.R. Matrix Analysis. 2nd ed. Cambridge: Cambridge Univer. Press, 2013.
- Horn R.A., Merino D.I. A real-coninvolutory analog of the polar decomposition // Linear Algebra Appl. 1993. V. 190. P. 209–227.
- Хорн Р., Джонсон Ч. Матричный анализ. М.: Мир, 1989.
Arquivos suplementares
