Stability of Supramolecular β-Cyclodextrin-Pyrene Complexes in A Silicate Hydrogel Matrix

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

In order to use the β-cyclodextrin-pyrene complex as a fluorescent receptor center, its stability in the solid phase of a water-soluble silicate gel was investigated. For this purpose, a technique for obtaining a silicate matrix with a high content of supramolecular complexes was developed and the temperature stability of the resulting material was investigated. Optimal conditions for working with complexes in the silica gel matrix have been identified. Comparative studies of the fluorescence spectra of complexes in liquid and solid phases were carried out by the method of fluorescence spectroscopy. As a result of the work done, it was possible to determine the main patterns of behavior of the supramolecular complex in the silicate hydrogel matrix and to conclude about the influence of the matrix structure on its stability.

全文:

受限制的访问

作者简介

A. Kondakova

Center of Photochemistry of the Russian Academy of Sciences

编辑信件的主要联系方式.
Email: anv.kond@yandex.ru
俄罗斯联邦, Moscow, 119421

A. Medvedeva

Center of Photochemistry of the Russian Academy of Sciences

Email: anv.kond@yandex.ru
俄罗斯联邦, Moscow, 119421

A. Koshkin

Center of Photochemistry of the Russian Academy of Sciences

Email: anv.kond@yandex.ru
俄罗斯联邦, Moscow, 119421

参考

  1. Odinokov A., Alfimov M. // Chem. Phys. Lett. 2017. V. 667. P. 108. https://doi.org/10.1016/j.cplett.2016.11.054
  2. Yan H., He L., Zhao W. et al. // Anal. Chem. 2014. V. 86. № 22. P. 11440. https://doi.org/10.1021/ac503546r
  3. Xie Y., Wang N., Li Y. et al. // Anal. Chim. Acta. 2019. V. 1088. P. 137. https://doi.org/10.1016/j.aca.2019.08.059
  4. Avakyan V.G., Nazarov V.B., Koshkin A.V. et al. // High. Energy Chem. 2015. V. 49. № 3. P. 177. https://doi.org/10.1134/S0018143915030030
  5. Avakyan V.G., Nazarov V.B., Odinokov A.V. et al. // J. Lumin. 2016. V. 180. P. 328. https://doi.org/10.1016/j.jlumin.2016.08.051
  6. Ogoshi T., Harada A. // Sensors. 2008. V. 8. № 8. P. 4961. https://doi.org/10.3390/s8084961
  7. Oborina E.N., Adamovich S.N. // Russ. J. Gen. Chem. 2021. V. 91. № 12. P. 2424. https://doi.org/10.1134/S1070363221120100
  8. Bender M.L., Komiyama M. Cyclodextrin Chem. Berlin, Heidelberg: Springer Berlin, Heidelberg, 1978. https://doi.org/10.1007/978-3-642-66842-5
  9. Dong D.C., Winnik M.A. // Photochem. Photobiol. 1982. V. 35. № 1. P. 17. https://doi.org/10.1111/j.1751-1097.1982.tb03805.x
  10. Nakajima A. // Bull. Chem. Soc. Jpn. 1971. V. 44. № 12. P. 3272. https://doi.org/10.1246/bcsj.44.3272
  11. Matsui K. // Langmuir. 1992. V. 8. № 2. P. 673. https://doi.org/10.1021/la00038a061
  12. Matsui K., Tominaga M., Arai Y. et al. // J. Non-Cryst. Solids. 1994. V. 169. № 3. P. 295. ttps://doi.org/10.1016/0022-3093(94)90325-5
  13. Kaufman V.R., Avnir D. // Langmuir. 1986. V. 2. № 6. P. 717. https://doi.org/10.1021/la00072a008
  14. Kalyanasundaram K., Thomas J.K. // J. Am. Chem. Soc. 1977. V. 99. № 7. P. 2039. https://doi.org/10.1021/ja00449a004
  15. Гирсова М.А., Головина Г.Ф., Куриленко Л.Н. и др. // Физика и химия стекла. 2021. V. 47. № 4. P. 428. https://doi.org/10.31857/S0132665121040077
  16. Girsova M.A., Kurilenko L.N., Anfimova I.N. // Glass Phys. Chem. 2021. V. 47. № 1. P. 62. https://doi.org/10.1134/S1087659621010053
  17. Tegge G. // Starch – Stärke. 1982. V. 34. № 11. P. 395. https://doi.org/10.1002/star.19820341113
  18. Rekharsky M.V., Inoue Y. // Chem. Rev. 1998. V. 98. № 5. P. 1875. https://doi.org/10.1021/cr970015o
  19. Harata K. // ChemInform. 2010. V. 29. № 39. https://doi.org/10.1002/chin.199839315
  20. Saenger W., Jacob J., Gessler K. et al. // Chem. Rev. 1998. V. 98. № 5. P. 1787. https://doi.org/10.1021/cr9700181
  21. Medvedeva A., Dubinets N., Koshkin A. et al. // J. Mol. Liq. 2024. V. 393. P. 123651. https://doi.org/10.1016/j.molliq.2023.123651
  22. Ionova I.V., Medvedeva A.A., Koshkin A.V. et al. // J. Sol-Gel Sci. Technol. 2022. V. 101. № 2. P. 335. https://doi.org/10.1007/s10971-021-05696-7
  23. Koshkin A.V., Aleksandrova N.A., Ivanov D.A. // J. Sol-Gel Sci. Technol. 2017. V. 81. № 1. P. 303. https://doi.org/10.1007/s10971-016-4183-0
  24. Munoz de la Pena A., Ndou T.T., Zung J.B. et al. // J. Am. Chem. Soc. 1991. V. 113. № 5. P. 1572. https://doi.org/10.1021/ja00005a019
  25. Nelson Gregory., Patonay Gabor., Warner I.M. // Anal. Chem. 1988. V. 60. № 3. P. 274. https://doi.org/10.1021/ac00154a018
  26. Messner M., Kurkov S.V., Palazón M.M. et al. // Int. J. Pharm. 2011. V. 419. № 1–2. P. 322. https://doi.org/10.1016/j.ijpharm.2011.07.041
  27. Connors K.A. // Chem Rev. 1997. V. 97. № 5. P. 1325. https://doi.org/10.1021/cr960371r
  28. Айлер Р.К. // Химия кремнезема: растворимость, полимеризация, коллоидные и поверхностные свойства, биохимия. М.: Мир, 1982. https://books.google.ru/books?id=Dc0RAQAAIAAJ (accessed October 16, 2023).
  29. Yamanaka T., Takahashi Y., Kitamura T. et al. // J. Lumin. 1991. V. 48–49. P. 265. https://doi.org/10.1016/0022-2313(91)90119-G
  30. Barashkov N.N., Sakhno T.V., Nurmukhametov R.N. et al. // Russ. Chem. Rev. 1993. V. 62. № 6. P. 539. https://doi.org/10.1070/RC1993v062n06ABEH000032

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. The structure of the supramolecular complex Py–2β-CD [4].

下载 (191KB)
3. Fig. 2. Fluorescence spectra of the Py–2β-CD (1) complex and an aqueous solution of pyrene (2), normalized for the intensity of the second vibrational band.

下载 (86KB)
4. Fig. 3. Transmission of THEOS-based gels obtained at different pH values.

下载 (94KB)
5. Fig. 4. Fluorescence spectra of samples after the end of the gelation process, sustained at 0 ° C with a buffer at pH 9.18 (1) and without a buffer (2), normalized to the intensity of the second vibrational band.

下载 (114KB)
6. Fig. 5. Temperature dependence of the fluorescence of the Py–2β-CD complex in a gel, where 1 is the heating process, 2 is the cooling process.

下载 (75KB)
7. Fig. 6. Dependence of excimer fluorescence at a wavelength of 422 nm on temperature, where 1 is the heating process, 2 is the cooling process.

下载 (87KB)

版权所有 © Russian Academy of Sciences, 2024