IRON AND BIOCHAR-BASED CATALYSTS (Fe/C) FOR HYDROGEN PRODUCTION BY METHANE DECOMPOSITION
- Autores: Lubavina V.V1, Sotnikova A.E1, Krysanova K.O1, Ivantsov M.I1, Kulikova M.V1
-
Afiliações:
- Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences
- Edição: Volume 70, Nº 10 (2025)
- Páginas: 1295-1303
- Seção: СИНТЕЗ И СВОЙСТВА НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ
- URL: https://vietnamjournal.ru/0044-457X/article/view/697755
- DOI: https://doi.org/10.7868/S3034560X25100075
- ID: 697755
Citar
Texto integral
Resumo
This article discusses catalysts for one of the environmentally friendly methods of hydrogen production (without carbon oxide emissions) based on the reaction of methane decomposition. Iron-containing systems applied to a carbon carrier — biochar — are used as catalysts. The active component (Fe) was applied by the method of incipient wetness impregnation from a solution of iron(III) nitrate nonahydrate. The catalytic systems were investigated under the conditions of the methane decomposition reaction and studied by physicochemical methods of analysis (Raman spectroscopy, X-ray phase analysis, transmission electron microscopy, elemental analysis, atomic absorption analysis). It was revealed that the catalysts are characterized by a graphite-like carbon structure in which iron-containing nanoparticles are uniformly distributed. The catalytic activity of the obtained systems in the temperature range of 500–850°C was estimated. The maximum conversion of methane is observed at a process temperature of 700°C on iron-containing biochar synthesized at a temperature of 250°C, and is 12.2%. The carbon product that is formed during the experiment is carbon nanotubes and onion-shaped carbon.
Palavras-chave
Sobre autores
V. Lubavina
Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences
Email: lubavina_v_v@ips.ac.ru
Moscow, Russia
A. Sotnikova
Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences
Email: lubavina_v_v@ips.ac.ru
Moscow, Russia
K. Krysanova
Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences
Email: lubavina_v_v@ips.ac.ru
Moscow, Russia
M. Ivantsov
Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences
Email: lubavina_v_v@ips.ac.ru
Moscow, Russia
M. Kulikova
Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences
Autor responsável pela correspondência
Email: lubavina_v_v@ips.ac.ru
Moscow, Russia
Bibliografia
- Zhou Y., Wang Y., Yang M. // Energy Convers. Manage. 2024. V. 304. P. 118223. https://doi.org/10.1016/J.ENCONMAN.2024.118223
- Hakkak M., Altintag N., Hakkak S. // Renew. Energy Focus. 2023. V. 46. P. 356. https://doi.org/10.1016/J.REF.2023.07.005
- Liu G., Guo T., Wang P. et al. // Heliyon. 2024. V. 10. № 18. P. E36219. https://doi.org/10.1016/J.HELIYON.2024.E36219
- Alshawaf M., van Haute M., Alsayegh O. et al. // Renew. Sustain. Energy Rev. 2025. V. 212. P. 115421. https://doi.org/10.1016/J.RSER.2025.115421
- Tahmashi M., Siavashi M., Ahmadi R. // Energy Convers. Manage. X. 2025. V. 26. P. 101005. https://doi.org/10.1016/J.ECMX.2025.101005
- Zuo X., Toam Q., Zhong Y. // Int. J. Hydrogen Energy. 2025. V. 118. P. 426. https://doi.org/10.1016/J.IJHYDENE.2025.03.171
- Хеанова Р.Б., Долгих В.Д., Иванов С.А. и др. // Сибирский физ. журн. 2024. Т. 18. № 3. C. 95. https://doi.org/10.25205/2541-9447-2023-18-3-95-103
- Bibak F., Meshkani F. // Fuel. 2024. V. 366. P. 131048. https://doi.org/10.1016/J.FUEL.2024.131048
- Осипов А.Р., Сидорчик И.А., Шляпин Д.А. и др. // Катализ в промышленности. 2021. Т. 1. № 1–2. C. 47. https://doi.org/10.18412/1816-0387-2021-1-2-47-54
- Li S., Liao J., Zhang Z. et al. // Resour. Chem. Mater. 2025. V. 4. № 4. P. 100123. https://doi.org/10.1016/J.RECM.2025.100123
- Muradov N., Smith F., T-Raissi A. // Catal. Today. 2005. V. 102–103. P. 225. https://doi.org/10.1016/J.CATTOD.2005.02.018
- Muradov N. // Catal. Commun. 2001. V. 2. № 3–4. P. 89. https://doi.org/10.1016/S1566-7367(01)00013-9
- Vander Wal R., Makiesse Nikawete M. // J. Carbon Research. 2020. V. 6. № 2. P. 23. https://doi.org/10.3390/c6020023
- Krylova A., Krysanova K., Kulikova M. et al. // Energies. 2021. V. 14. № 18. P. 5890. https://doi.org/10.3390/en14185890
- Sivakumar G., Karattil Suresh A., Nag D. et al. // Int. J. Hydrogen Energy. 2025. V. 121. P. 42. https://doi.org/10.1016/J.IJHYDENE.2025.03.270
- Liu Z., Zhao L., Yao Z. et al. // Chem. Eng. J. 2023. V. 476. P. 146373. https://doi.org/10.1016/J.CEJ.2023.146373
- Zhang P., Fan J., Wang Y. et al. // Carbon N. Y. 2024. V. 222. P. 118998. https://doi.org/10.1016/J.CARBON.2024.118998
- Yu J., Sun L., Berrucco C. et al. // J. Anal. Appl. Pyrolysis. 2018. V. 130. P. 127. https://doi.org/10.1016/j.jaap.2018.01.018
- Guizani C., Haddad K., Limousy L. et al. // Carbon N. Y. 2017. V. 119. P. 519. https://doi.org/10.1016/j.carbon.2017.04.078
- Zhu X., Liu Y., Qian F. et al. // ACS Sustain. Chem. Eng. 2015. V. 3. № 5. P. 833. https://doi.org/10.1021/acsuschemeng.5b00153
- Sevilla M., Fuertes A.B. // Carbon N. Y. 2009. V. 47. № 9. P. 2281. https://doi.org/10.1016/j.carbon.2009.04.026
- Hautoko D., Khan W.U., Putra A.F.P. et al. // Ind. Eng. Chem. Res. 2024. V. 63. № 44. P. 18869. https://doi.org/10.1021/acs.iecr.4c02856
- Osipov A.R., Sidorchik I.A., Shlyapin D.A. et al. // Catal. Ind. 2021. V. 13. № 3. P. 244. https://doi.org/10.1134/S2070050421030089
- Vedele P., Sartoretti E., Torretti G. et al. // Chem. Eng. J. 2025. V. 514. P. 163392. https://doi.org/10.1016/J.CEJ.2025.163392
- Hautoko D., Khan W.U., Alomran A.M. et al. // Catal. Today. 2025. V. 453. P. 115259. https://doi.org/10.1016/J.CATTOD.2025.115259
- Bire S.S., Deshmukh S.K. // Bio-derived Carbon Nanostructures. 2024. P. 129. https://doi.org/10.1016/B978-0-443-13579-8.00014-0
Arquivos suplementares
