Substitution of praseodymium for cadmium and lead in the Pr5Mo3O16+δ structure

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Solid solutions based on fluorite-like phase in systems Pr5–xMexMo3O16+δ, where Me = Cd, Pb, were obtained by solid-phase synthesis from metal oxides. The phase content after calcination at 1000°C was studied by X-ray diffraction, the substitution limits and the dependences of the unit cell parameter on the composition of the systems were determined. The parameters of the crystal structure of solid solutions were specified by the Rietveld method. The influence of magnesium oxide additives on the sinterability of cadmium-containing solid solutions has been established. Isomorphous substitution of praseodymium by lead and cadmium leads to a decrease in the conductivity value of the samples in the studied systems.

Толық мәтін

Рұқсат жабық

Авторлар туралы

А. Sidorenko

Donetsk State University

Email: chebyshev.konst@mail.ru
Ресей, Donetsk, 283001

Т. Berezhnaya

North-Caucasus Federal University

Email: chebyshev.konst@mail.ru
Ресей, Stavropol, 355017

L. Pasechnik

Donetsk State University

Email: chebyshev.konst@mail.ru
Ресей, Donetsk, 283001

I. Ukleina

North-Caucasus Federal University

Email: chebyshev.konst@mail.ru
Ресей, Stavropol, 355017

A. Guseva

North-Caucasus Federal University

Email: chebyshev.konst@mail.ru
Ресей, Stavropol, 355017

K. Chebyshev

North-Caucasus Federal University

Хат алмасуға жауапты Автор.
Email: chebyshev.konst@mail.ru
Ресей, Stavropol, 355017

Әдебиет тізімі

  1. Shlyakhtina A.V., Avdeev M., Lyskov N.V. // Dalton Trans. 2020. V. 49. P. 2833. https://doi.org/10.1039/C9DT04724G
  2. Shlyakhtina A.V., Lyskov N.V., Šalkus T. // Int. J. Hydrogen Energy. 2021. V. 46. P. 16965. https://doi.org/10.1016/J.IJHYDENE.2021.02.029
  3. Morkhova Ye.A., Orlova E.I., Kabanov A.A. // Solid State Ionics. 2023. V. 400. P. 116337. https://doi.org/10.1016/j.ssi.2023.116337
  4. Bazarova Zh.G., Subanakov A.K., Bazarov B.G. // J. Struct. Chem. 2022. V. 63. P. 1678. https://doi.org/10.1134/s1063774523601430
  5. Pautonnier A., Coste S., Barré M., Lacorre P. // Prog. Solid State Chem. 2023. V. 69. 100382. https://doi.org/10.1016/j.progsolidstchem.2022.100382
  6. Efremov V.A. // Russ. Chem. Rev. 1990. V. 59. P. 627. https://doi.org/10.1070/RC1990v059n07ABEH003547
  7. Shlyakhtina A.V., Lyskov N.V., Kolbanev I.V. // Russ. J. Electrochem. 2023. V. 59. P. 60. https://doi.org/10.1134/s1023193523010081
  8. Voronkova V.I., Kharitonova E.P., Belov D.A. // Solid State Ionics. 2012. V. 225. P. 654. https://doi.org/10.1016/j.ssi.2012.03.002
  9. Biendicho J.J., Playford H.Y., Rahman S.M.H. // Inorg. Chem. 2018. V. 57. № 12. P. 7025. https://doi.org/10.1021/acs.inorgchem.8b00734
  10. Tsai M., Greenblatt M., McCarroll W. // Chem. Mater. 1989. V. 1. № 2. P. 253. https://doi.org/10.1021/cm00002a017
  11. Qi S., Xie H., Huang Y. // Opt. Mater. Express. 2014. V. 4. № 2. P. 190. https://doi.org/10.1364/OME.4.001444
  12. Yu R., Fan A., Yuan M. // Opt. Mater. Express. 2016. V. 6. P. 3469. https://doi.org/10.1364/OME.6.002397
  13. Bin Deng, Yue Yang, Wensheng Chen // J. Mater. Sci. – Mater. Electron. 2022. V. 33. № 29. P. 23042. https://doi.org/10.1007/s10854-022-09071-2
  14. Коваль К.А., Голубович В.С., Бережная Т.С., Чебышев К.А. Химические проблемы современности / Донецк: ФГБОУ ВО “Донецкий государственный университет”, 2024. С. 130.
  15. Lyskov N.V., Kotova A.I., Petukhov D.I. // Russ. J. Electrochem. 2022. V. 58. P. 989. https://doi.org/10.1134/S102319352211009X
  16. Istomin S., Kotova A., Lyskov N. // Russ. J. Inorg. Chem. 2018. V. 63. P. 1291. https://doi.org/10.1134/S003602361810008X.
  17. Istomin S., Lyskov N., Mazo G. // Russ. Chem. Rev. 2021. V. 90. P. 644. https://doi.org/10.1070/RCR4979
  18. Lyu Y., Xie J., Wang D. // J. Mater. Sci. 2020. V. 55. P. 7184. https://doi.org/10.1007/s10853-020-04497-7.
  19. Yatoo M.A., Habib F., Malik A.H. // MRS Commun. 2023. V. 13. P. 378. https://doi.org/10.1557/s43579-023-00371-0
  20. Faurie J.P., Kohlmuller R. // Rev. Chim. Miner. 1971. V. 8. P. 241.
  21. Orlova E.I., Kharitonova E.P., Voronkova V.I. // Crystallogr. Rep. 2017. V. 62. P. 469. https://doi.org/10.11134/S1063774517030178
  22. Kaiyang Liu, Xi Wang, Pengxiang Gao // Ceram. Int. 2022. V. 48. P. 27360. https://doi.org/10.1016/j.ceramint.2022.05.186
  23. Kurtz R., Paulmann C., Bismayer U. // HASYLAB Annual Report. 2004. V. 1. P. 12812 http://hasyweb.desy.de/science/annual_reports/2004_report/part1/contrib/42/12812.pdf
  24. Antipin A.M., Sorokina N.I., Alekseeva O.A. // Acta Crystallogr., Sect. B: Struct. Sci. Cryst. Eng. Mater. 2015. V. 71. P. 186. https://doi.org/10.1107/S2052520615003315.
  25. Ardanova L., Chebyshev K., Ignatov A. // Key Eng. Mater. 2020. V. 865. P. 49. https://doi.org/10.4028/www.scientific.net/KEM.865.49
  26. Чебышев К.А., Игнатов А.В., Пасечник Л.В. // Вестник Донецкого национального университета. Серия А: Естествен. науки. 2021. № 1. С. 166.
  27. Shannon R.D. // Acta Crystallogr., Sect. A. 1976. V. 32. P. 751. https://doi.org/10.1107/S0567739476001551
  28. Chebyshev K.A., Ignatov A.V., Pasechnik L.V. // J. Chem. 2021. V. 2021. P. 5537048. https://doi.org/10.1155/2021/5537048.
  29. Ge’tman E.I., Chebyshev К.A., Ardanova L.I., Pasechnik L.V. // Solid State Phenom. 2015. V. 230. P. 45. https://doi.org/10.4028/www.scientific.net/SSP.230.45
  30. Antipin A., Alekseeva O., Sorokina N. // Crystallogr. Rep. 2015. V. 60. P. 640. https://doi.org/10.1134/S1063774515050028
  31. Zhang G.G., Fang Q.F., Wang X.P., Yi Z.G. // J. Phys.: Condens. Matter. 2003. V. 15. P. 4135. https://doi.org/10.1088/0953-8984/15/24/307

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Diffraction patterns of samples of the Pr5–xMxMo3O16+δ systems, where M = Pb (a), Cd (b), at 1000°C: x = 0 (1), 0.1 (2), 0.3 (3), 0.5 (4), 0.7 (5), 1.0 (6), 1.2 (7), 1.5 (8). Miller indices apply to solid solutions based on Pr5Mo3O16+δ (a) and CdMoO4 (b).

Жүктеу (251KB)
3. Fig. 2. Dependences of the unit cell parameter of the phase with the Pr5Mo3O16+δ structure on the composition of the Pr5–xMxMo3O16+δ systems: 1 – M = Pb, 2 – M = Cd, 3 – Pr4PbMo3O16 [20], 4 – Pr4CdMo3O16 [20].

Жүктеу (51KB)
4. Fig. 3. Electrical conductivity of samples of the Pr5–xPbxMo3O16+δ system (a): x = 0 (1), 0.1 (2), 0.3 (3), 0.5 (4), 0.7 (5), 1.0 (6). Dependences of the logarithm of electrical conductivity at 700°C (1) and activation energy (2) on the composition of the system (b).

Жүктеу (142KB)
5. Fig. 4. Electrical conductivity of samples of the Pr5–xCdxMo3O16+δ system (a): x = 0 (1), 0.1 (2), 0.3 (3), 0.5 (4), 0.7 (5), 1.0 (6). Dependences of the logarithm of electrical conductivity at 700°C (1) and activation energy (2) on the composition of the system (b).

Жүктеу (147KB)
6. Fig. S1. Dependences of the intensity of the reflection of the impurity phase at 31.3°2Θ in the Pr5–xPbxMo3O16+δ system (1) and the reflection (112) of the CdMoO4 phase (2) in the Pr5–xCdxMo3O16+δ system on the content of the divalent element.

Жүктеу (530KB)
7. Рис. S2. Дифрактограммы образцов системы Pr4.3Cd0.7Mo3O16+δ·yMgO (а): y = 0 (1), y = 0.025 (2), y = 0.05 (3), y = 0.075 (4), y = 0.1 (5). Зависимость относительной плотности образцов после спекания при 1000°С (б).

Жүктеу (195KB)
8. Supplementary materials
Жүктеу (235KB)
9. Supplementary materials
Жүктеу (233KB)

© Russian Academy of Sciences, 2025