ZINC GLYCERATE AS A PRECURSOR FOR THE PREPARATION OF NANOCRYSTALLINE ZnO WITH IMPROVED NO2 GAS SENSITIVITY

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

This study presents a simple and efficient method for synthesizing nanocrystalline zinc oxide using glycerate precursors. Zinc glycerates were obtained through thermal treatment of a solution of zinc acetylacetonate monohydrate in glycerol, followed by additional thermal processing, which resulted in the formation of nanocrystalline ZnO. The synthesized ZnO nanoparticles were characterized using XRD, SEM, and DTA/DSC techniques. The gas-sensing properties of ZnO toward a wide range of analyte gases were investigated. It was demonstrated that nanocrystalline ZnO exhibits high sensitivity and selectivity to NO2. The proposed approach opens new prospects for the development of cost-effective and efficient gas sensors based on semiconductor oxides.

About the authors

A. S Mokrushin

Karnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: atryom.nano@gmail.com
Moscow, Russia

I. A Nagornov

Karnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: atryom.nano@gmail.com
Moscow, Russia

S. A Dmitrieva

D.I. Mendeleev Russian University of Chemical Technology

Email: atryom.nano@gmail.com
Moscow, Russia

N. P Simonenko

Karnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: atryom.nano@gmail.com
Moscow, Russia

E. P Simonenko

Karnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Author for correspondence.
Email: atryom.nano@gmail.com
Moscow, Russia

References

  1. Özgür Ü., Alivov Y.I., Liu C. et al. // J. Appl. Phys. 2005. V. 98. № 4. P. 041301. https://doi.org/10.1063/1.1992666
  2. Look D.C.// Mater. Sci. Eng. B. 2001. V. 80. № 1–3. P. 383. https://doi.org/10.1016/S0921-5107(00)00604-8
  3. Thomas D.G., Lander J.J. // J. Phys. Chem. Solids. 1957. V. 2. № 4. P. 318. https://doi.org/10.1016/0022-3697(57)90077-X
  4. Reynolds D.C., Look D.C., Jogai B. et al. // Phys. Rev. B. 1999. V. 60. № 4. P. 2340. https://doi.org/10.1103/PhysRevB.60.2340
  5. Chen Y., Bagnall D.M., Koh H. et al. // J. Appl. Phys. 1998. V. 84. № 7. P. 3912. https://doi.org/10.1063/1.368595
  6. Mang, K. Reimann, S. Ribenacke // Solid State Commun. 1995. V. 94. № 4. P. 251. https://doi.org/10.1016/0038-1098(95)00054-2
  7. Janotti, C.G. Van de Walle // Rep. Prog. Phys. 2009. V. 72. № 12. P. 126501. https://doi.org/10.1088/0034-4885/72/12/126501
  8. Wang Z.L. // J. Phys. Condens. Matter. 2004. V. 16. № 25. P. R829. https://doi.org/10.1088/0953-8984/16/25/R01
  9. Huang M.H., Mao S., Feick H. et al. // Science. 2001. V. 292. № 5523. P. 1897. https://doi.org/10.1126/science.1060367
  10. Arnold M.S., Avouris P., Pan Z.W., Wang Z.L. // J. Phys. Chem. B. 2003. V. 107. № 3. P. 659. https://doi.org/10.1021/jp0271054
  11. Collins P.G., Arnold M.S., Avouris P. // Science. 2001. V. 292. № 5517. P. 706. https://doi.org/10.1126/science.1058782
  12. Schwab K., Henriksen E.A., Worlock J.M., Roukes M.L. // Nature. 2000. V. 404. № 6781. P. 974. https://doi.org/10.1038/35010065
  13. Comini E., Faglia G., Shevegliert G., Pan Z., Wang Z.L. // Appl. Phys. Lett. 2002. V. 81. № 10. P. 1869. https://doi.org/10.1063/1.1504867
  14. Zhao M.-H., Wang Z.-L., Mao S.X. // Nano Lett. 2004. V. 4. № 4. P. 587. https://doi.org/10.1021/nl035198a
  15. Wibowo M.A., Marsudi M.I., Amal M.I. et al. // RSC Adv. 2020. V. 10. № 69. P. 42838. https://doi.org/10.1039/D0RA07689A
  16. Keis K., Lindgren J., Lindquist S.-E., Hagfeldt A. // Langmuir. 2000. V. 16. № 10. P. 4688. https://doi.org/10.1021/la9912702
  17. Wang C., Yin L., Zhang L. et al. // Sensors. 2010. V. 10. № 3. P. 2088. https://doi.org/10.3390/s100302088
  18. Korotzenkov G. // Mater. Sci. Eng. R Rep. 2008. V. 61. № 1–6. P. 1. https://doi.org/10.1016/j.mscr.2008.02.001
  19. Lee J.-H. // Sens. Actuators, B. 2009. V. 140. № 1. P. 319. https://doi.org/10.1016/j.snb.2009.04.026
  20. Aygin S., Cann D. // Sens. Actuators, B. 2005. V. 106. № 2. P. 837. https://doi.org/10.1016/j.snb.2004.10.004
  21. Jing Z., Zhan J. // Adv. Mater. 2008. V. 20. № 23. P. 4547. https://doi.org/10.1002/adma.200800243
  22. Rothschild Y. Komem // J. Appl. Phys. 2004. V. 95. № 11. P. 6374. https://doi.org/10.1063/1.1728314
  23. Yu J.H., Choi G.M. // Sens. Actuators, B. 1998. V. 52. № 3. P. 251. https://doi.org/10.1016/S0925-4005(98)00275-5
  24. Choi M.S., Kim M.Y., Mirzaei A. et al. // Appl. Surf. Sci. 2021. V. 568. P. 150910. https://doi.org/10.1016/j.apsusc.2021.150910
  25. Leileveld J., Klingmüller K., Pozzer A. et al. // Proc. Natl. Acad. Sci. U.S.A. 2019. V. 116. № 15. P. 7192. https://doi.org/10.1073/pnas.1819989116
  26. Brunekreef B., Holgate S.T. // Lancet. 2002. V. 360. № 9341. P. 1233. https://doi.org/10.1016/S0140-6736(02)11274-8
  27. HorennansF., Menus J., Bonggers E. et al. // Sens. Actuators, B. 2010. V. 148. № 2. P. 392. https://doi.org/10.1016/j.snb.2010.05.003
  28. Xuan J., Zhao G., Sun M. et al. // RSC Adv. 2020. V. 10. № 65. P. 39786. https://doi.org/10.1039/D0RA073281
  29. Zhu L., Zeng W., Li Y. // Mater. Lett. 2018. V. 228. P. 331. https://doi.org/10.1016/j.matlet.2018.06.049
  30. Ong C.B., Ng L.Y., Mohammad A.W. // Renew. Sustain. Energy Rev. 2018. V. 81. P. 536. https://doi.org/10.1016/j.rser.2017.08.020
  31. Sakai G., Matsunaga N., Shimanoe K., Yamazoe N. // Sens. Actuators, B. 2001. V. 80. № 2. P. 125. https://doi.org/10.1016/S0925-4005(01)00890-5
  32. Xia H., Xu Q., Zhang J. // Nano-Micro Lett. 2018. V. 10. № 4. P. 66. https://doi.org/10.1007/s40820-018-0219-z
  33. Liu J., Gao F., Wu L. et al. // Appl. Phys. A. 2020. V. 126. № 6. P. 454. https://doi.org/10.1007/s00339-020-03643-x
  34. Mrabet, N. Mahdhi, A. Boukhachen, M. Amlouk, T. Manoubi // J. Alloys Compd. 2016. V. 688. P. 122. https://doi.org/10.1016/j.jallcom.2016.06.286
  35. Livage J., Henry M., Sanchez C. // Prog. Solid State Chem. 1988. V. 18. № 4. P. 259. https://doi.org/10.1016/0079-6786(88)90005-2
  36. Segovia M., Sotomayor C., Gonzalez G., Benavente E. // Mol. Cryst. Liq. Cryst. 2012. V. 555. № 1. P. 40. https://doi.org/10.1080/15421406.2012.634363
  37. Choy K. // Prog. Mater. Sci. 2003. V. 48. № 2. P. 57. https://doi.org/10.1016/S0079-6425(01)00009-3
  38. Zahra S., Bukhari H., Qaisar S., Sheikh A., Amin A. // BMC Chem. 2022. V. 16. № 1. P. 104. https://doi.org/10.1186/s13065-022-00900-3
  39. Greiner, J.H. Wendoff // Angew. Chem. Int. Ed. 2007. V. 46. № 30. P. 5670. https://doi.org/10.1002/anie.200604646
  40. M.I. Ikin, V.F. Gromov, G.N. Gerasimov et al. // Micromachines. 2023. V. 14. № 9. P. 1685. https://doi.org/10.3390/mi14091685
  41. Droepen E.K., Wee B.S., Chin S.F., Kok K.Y. // Biointerface Res. Appl. Chem. 2021. V. 12. № 1. P. 4261. https://doi.org/10.33263/BRIAC123.42614292
  42. Dien N.D. // Adv. Mater. Sci. 2019. V. 4. № 2. P. 1. https://doi.org/10.15761/AMS.1000147
  43. Yukhin Y.M., Titkov A.I., Logutenko O.A., Mishchenko K.V., Lyakhov N.Z. // Russ. J. Gen. Chem. 2017. V. 87. № 12. P. 2870. https://doi.org/10.1134/S1070363217120180
  44. Pazyrev I.S., Andreikov E.I., Zakharova G.S., Podval’naya N.V., Osipova V.A. // Russ. Chem. Bull. 2021. V. 70. № 4. P. 805. https://doi.org/10.1007/s11172-021-3153-z
  45. Kim H.-B., Jeong D.-W., Jang D.-J. // CrystEngComm. 2016. V. 18. № 5. P. 898. https://doi.org/10.1039/C5CE02334C
  46. Zahra S., Shahid W., Amin C.A., Zahra S., Kanwal B. // BMC Chem. 2022. V. 16. № 1. P. 105. https://doi.org/10.1186/s13065-022-00898-8
  47. Zhang P., Liu L., Fan M., Dong Y., Jiang P. // RSC Adv. 2016. V. 6. № 80. P. 76223. https://doi.org/10.1039/C6RA14288E
  48. Zhang S., Yang P., Zhang A., Shi R., Zhu Y. // CrystEngComm. 2013. V. 15. № 43. P. 9090. https://doi.org/10.1039/c3ce41218k
  49. Simonenko E.P., Simonenko N.P., Nagornov I.A. et al. // Russ. J. Inorg. Chem. 2017. V. 62. № 11. P. 1415. https://doi.org/10.1134/S0036023617110195
  50. Nagornov I.A., Mokrushin A.S., Simonenko E.P. et al. // Ceram. Int. 2020. V. 46. № 6. P. 7756. https://doi.org/10.1016/j.ceramint.2019.11.279
  51. Simonenko E.P., Simonenko N.P., Nagornov I.A. et al. // Russ. J. Inorg. Chem. 2018. V. 63. № 11. P. 1519. https://doi.org/10.1134/S0036023618110189
  52. Simonenko E.P., Simonenko N.P., Nagornov I.A. et al. // Russ. J. Inorg. Chem. 2017. V. 62. № 11. P. 1415. https://doi.org/10.1134/S0036023617110195
  53. Simonenko E.P., Simonenko N.P., Nagornov I.A. et al. // Russ. J. Inorg. Chem. 2018. V. 63. № 11. P. 1519. https://doi.org/10.1134/S0036023618110189
  54. Mokrushin A.S., Nagornov I.A., Simonenko T.L. et al. // Appl. Surf. Sci. 2022. V. 589. P. 152974. https://doi.org/10.1016/j.apsusc.2022.152974
  55. Simonenko E.P., Mokrushin A.S., Nagornov I.A. et al. // Russ. J. Inorg. Chem. 2024. V. 69. № 5. P. 604. https://doi.org/10.1134/S0036023624600850
  56. Mokrushin A.S., Nagornov I.A., Simonenko T.L. et al. // Mater. Sci. Eng. B. 2021. V. 271. P. 115233. https://doi.org/10.1016/j.mseb.2021.115233
  57. Mokrushin A.S., Nagornov I.A., Gorban Y.M. et al. // Ceram. Int. 2023. V. 49. № 11. P. 17600. https://doi.org/10.1016/j.ceramint.2023.02.126
  58. Ji H., Zeng W., Li Y. // Nanoscale. 2019. V. 11. № 47. P. 22664. https://doi.org/10.1039/C9NR07699A
  59. Jeong S., Kim J., Lee J. // Adv. Mater. 2020. V. 32. № 51. P. 2002075. https://doi.org/10.1002/adma.202002075
  60. Chen M., Wang Z., Han D., Gu F., Guo G. // J. Phys. Chem. C. 2011. V. 115. № 26. P. 12763. https://doi.org/10.1021/jp201816d
  61. Marikutsa, M. Rumyantseva, E.A. Konstantinova, A. Gaskov // Sensors. 2021. V. 21. № 7. P. 2554. https://doi.org/10.3390/s21072554

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences