THERMAL STABILITY AND PHYSICO CHEMICAL PROPERTIES OF PHASE CHANGE MATERIALS BASED ON Zn(NO3)2 · 6H2O
- Authors: Testov D.S1, Morzhukhina S.V1, Morzhukhin A.M1, Lugovoy Y.E1, Kulida D.A1, Stepanyuk K.I1, Ilina N.O1, Kiryukhina G.V2,3
-
Affiliations:
- Dubna State University
- Moscow State University
- Korzhinsky Institute of Experimental Mineralogy, Russian Academy of Sciences
- Issue: Vol 70, No 10 (2025)
- Pages: 1366-1379
- Section: НЕОРГАНИЧЕСКИЕ МАТЕРИАЛЫ И НАНОМАТЕРИАЛЫ
- URL: https://vietnamjournal.ru/0044-457X/article/view/697763
- DOI: https://doi.org/10.7868/S3034560X25100157
- ID: 697763
Cite item
Abstract
The research on the development of heat storage materials based on Zn(NO3)2 · 6H2O with a phase transition in 25–40°C. It was established that the most stable composition is the one containing Zn(NO3)2 · 6H2O/Co(NO3)2 · 6H2O/expanded graphite/CMC. Its crystallization heat is determined taking into account the contribution of heat capacity in the supercooled region before and after 500 cycles of thermal cycling. Its value is 146.0 ± 7.3 and 140.6 ± 7.01/g and is comparable with the corresponding heats of fusion of 147.4 ± 4.4 and 130.6 ± 3.91/g. The composition of Zn(NO3)2 · 6H2O/Co(NO3)2 · 6H2O/expanded graphite/CMC was investigated in a pilot sample of an electric underfloor heating system. It was found that the energy consumption for heating the heating film with material was reduced by 67% compared to the heating film without material.
About the authors
D. S Testov
Dubna State University
Email: dima13-1994@yandex.ru
Dubna, 141982 Russia
S. V Morzhukhina
Dubna State University
Email: dima13-1994@yandex.ru
Dubna, 141982 Russia
A. M Morzhukhin
Dubna State University
Email: dima13-1994@yandex.ru
Dubna, 141982 Russia
Y. E Lugovoy
Dubna State University
Email: dima13-1994@yandex.ru
Dubna, 141982 Russia
D. A Kulida
Dubna State University
Email: dima13-1994@yandex.ru
Dubna, 141982 Russia
K. I Stepanyuk
Dubna State University
Email: dima13-1994@yandex.ru
Dubna, 141982 Russia
N. O Ilina
Dubna State University
Email: dima13-1994@yandex.ru
Dubna, 141982 Russia
G. V Kiryukhina
Moscow State University; Korzhinsky Institute of Experimental Mineralogy, Russian Academy of Sciences
Author for correspondence.
Email: dima13-1994@yandex.ru
Moscow, 119991 Russia; Chernogolovka, 142432 Russia
References
- Sarbu I., Sebarchievici C. // Sustainability. 2018. V. 10. № 1. P. 191. https://doi.org/10.3390/su10010191
- Du K., Calautti J., Wang Zh. et al. // Appl. Energy. 2018. V. 220. P. 242. https://doi.org/10.1016/j.apenergy.2018.03.005
- Morgsky E. // Therm. Energy Storage Sust. Energy Cons. 2007. V. 234. P. 3. https://doi.org/10.1007/978-1-4020-5290-3_1
- Purohit B.K., Sisila V.S. // Energy Storage. 2021. V. 3. № 2. P. e212. https://doi.org/10.1002/est2.212
- Bukhalkin D.D., Semenov A.P., Novikov A.A. et al. // Chem. Tech. Fuels Oils. 2020. V. 55. P. 733.
- Kenisarin M., Mahkamov K. // Sol. Energy Mater. Sol. Cells. 2016. V. 145. P. 255. https://doi.org/10.1016/j.solmat.2015.10.029
- Kumar N., Banerjee D., Chaves R.Jr. // J. Energy Storage. 2018. V. 20. P. 153. https://doi.org/10.1016/j.est.2018.09.005
- Giester G., Lengauer Ch.L., Widner M. et al. // Z. Krist. Cryst. Mater. 2008. V. 223. № 6. P. 408.
- Malecka B., Lacz A., Drozdz E., Malecki A. // J. Therm. Anal. Calorim. 2015. V. 119. P. 1053. https://doi.org/10.1007/s10973-014-4262-9
- Kozak A.J., Wieczorek-Ciurowa K., Kozak A. // J. Therm. Anal. Calorim. 2003. V. 74. P. 497. https://doi.org/10.1023/B:JTAN.0000005186.15474.bc
- Maneva M., Petrov N. // J. Therm. Anal. 1989. V. 35. P. 2297. https://doi.org/10.1007/bf01911893
- Dixit P., Reddy V.J., Dasari A., Chattopadhyay S. // J. Energy Storage. 2022. V. 52. P. 104804. https://doi.org/10.1016/j.est.2022.104804
- Chakraborty A., Noh J., Shamberger P., Yu Ch. // Energy Storage. 2023. V. 5. № 4. P. e417. https://doi.org/10.1002/est2.417
- Mehling H., Cabeza L.F. // Heat Mass Transfer. 2008. P. 11. https://doi.org/10.1007/978-3-540-68557-9
- Bissel A.J., Oliver D., Pulham C.R. et al. Pat. USA № US11891561B2 // 2024. P. 30.
- Telkes M. // Ind. Eng. Chem. 1952. V. 44. № 6. P. 1308.
- Khadiran N.F., Hussein M.Z., Ahmad R. et al. // J. Porous Mater. 2021. V. 28. P. 1797.
- Mansour S.A.A. // Mater. Chem. Phys. 1994. V. 36. № 3–4. P. 317. https://doi.org/10.1016/0254-0584(94)90048-5
- Thonon M., Fraisse G., Zalewski L., Paillia M. // Appl. Therm. Eng. 2021. V. 190. P. 116751. https://doi.org/10.5281/zenodo.15807733
- Marin J.M., Zalba B., Cabeza L.F., Mehling H. // Meas. Sci. Technol. 2003. V. 14. № 2. P. 184. https://doi.org/10.1088/0957-0233/14/2/305
- D’Avignon K., Kummer M. // J. Therm. Sci. Eng. Appl. 2015. V. 7. № 4. P. 041015. https://doi.org/10.1115/1.4031220
- Mehling H., Ebert H.P., Schossig P. // Th IIR Conference on Phase Change Materials and Slurries for Refrigeration and Air Conditioning. Dinan. France. 2006. P. 8.
- Theresa L., Vetraj R. // Mat. Res. Exp. 2019. V. 6. № 12. P. 125527.
Supplementary files

