THERMAL STABILITY AND PHYSICO CHEMICAL PROPERTIES OF PHASE CHANGE MATERIALS BASED ON Zn(NO3)2 · 6H2O

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The research on the development of heat storage materials based on Zn(NO3)2 · 6H2O with a phase transition in 25–40°C. It was established that the most stable composition is the one containing Zn(NO3)2 · 6H2O/Co(NO3)2 · 6H2O/expanded graphite/CMC. Its crystallization heat is determined taking into account the contribution of heat capacity in the supercooled region before and after 500 cycles of thermal cycling. Its value is 146.0 ± 7.3 and 140.6 ± 7.01/g and is comparable with the corresponding heats of fusion of 147.4 ± 4.4 and 130.6 ± 3.91/g. The composition of Zn(NO3)2 · 6H2O/Co(NO3)2 · 6H2O/expanded graphite/CMC was investigated in a pilot sample of an electric underfloor heating system. It was found that the energy consumption for heating the heating film with material was reduced by 67% compared to the heating film without material.

About the authors

D. S Testov

Dubna State University

Email: dima13-1994@yandex.ru
Dubna, 141982 Russia

S. V Morzhukhina

Dubna State University

Email: dima13-1994@yandex.ru
Dubna, 141982 Russia

A. M Morzhukhin

Dubna State University

Email: dima13-1994@yandex.ru
Dubna, 141982 Russia

Y. E Lugovoy

Dubna State University

Email: dima13-1994@yandex.ru
Dubna, 141982 Russia

D. A Kulida

Dubna State University

Email: dima13-1994@yandex.ru
Dubna, 141982 Russia

K. I Stepanyuk

Dubna State University

Email: dima13-1994@yandex.ru
Dubna, 141982 Russia

N. O Ilina

Dubna State University

Email: dima13-1994@yandex.ru
Dubna, 141982 Russia

G. V Kiryukhina

Moscow State University; Korzhinsky Institute of Experimental Mineralogy, Russian Academy of Sciences

Author for correspondence.
Email: dima13-1994@yandex.ru
Moscow, 119991 Russia; Chernogolovka, 142432 Russia

References

  1. Sarbu I., Sebarchievici C. // Sustainability. 2018. V. 10. № 1. P. 191. https://doi.org/10.3390/su10010191
  2. Du K., Calautti J., Wang Zh. et al. // Appl. Energy. 2018. V. 220. P. 242. https://doi.org/10.1016/j.apenergy.2018.03.005
  3. Morgsky E. // Therm. Energy Storage Sust. Energy Cons. 2007. V. 234. P. 3. https://doi.org/10.1007/978-1-4020-5290-3_1
  4. Purohit B.K., Sisila V.S. // Energy Storage. 2021. V. 3. № 2. P. e212. https://doi.org/10.1002/est2.212
  5. Bukhalkin D.D., Semenov A.P., Novikov A.A. et al. // Chem. Tech. Fuels Oils. 2020. V. 55. P. 733.
  6. Kenisarin M., Mahkamov K. // Sol. Energy Mater. Sol. Cells. 2016. V. 145. P. 255. https://doi.org/10.1016/j.solmat.2015.10.029
  7. Kumar N., Banerjee D., Chaves R.Jr. // J. Energy Storage. 2018. V. 20. P. 153. https://doi.org/10.1016/j.est.2018.09.005
  8. Giester G., Lengauer Ch.L., Widner M. et al. // Z. Krist. Cryst. Mater. 2008. V. 223. № 6. P. 408.
  9. Malecka B., Lacz A., Drozdz E., Malecki A. // J. Therm. Anal. Calorim. 2015. V. 119. P. 1053. https://doi.org/10.1007/s10973-014-4262-9
  10. Kozak A.J., Wieczorek-Ciurowa K., Kozak A. // J. Therm. Anal. Calorim. 2003. V. 74. P. 497. https://doi.org/10.1023/B:JTAN.0000005186.15474.bc
  11. Maneva M., Petrov N. // J. Therm. Anal. 1989. V. 35. P. 2297. https://doi.org/10.1007/bf01911893
  12. Dixit P., Reddy V.J., Dasari A., Chattopadhyay S. // J. Energy Storage. 2022. V. 52. P. 104804. https://doi.org/10.1016/j.est.2022.104804
  13. Chakraborty A., Noh J., Shamberger P., Yu Ch. // Energy Storage. 2023. V. 5. № 4. P. e417. https://doi.org/10.1002/est2.417
  14. Mehling H., Cabeza L.F. // Heat Mass Transfer. 2008. P. 11. https://doi.org/10.1007/978-3-540-68557-9
  15. Bissel A.J., Oliver D., Pulham C.R. et al. Pat. USA № US11891561B2 // 2024. P. 30.
  16. Telkes M. // Ind. Eng. Chem. 1952. V. 44. № 6. P. 1308.
  17. Khadiran N.F., Hussein M.Z., Ahmad R. et al. // J. Porous Mater. 2021. V. 28. P. 1797.
  18. Mansour S.A.A. // Mater. Chem. Phys. 1994. V. 36. № 3–4. P. 317. https://doi.org/10.1016/0254-0584(94)90048-5
  19. Thonon M., Fraisse G., Zalewski L., Paillia M. // Appl. Therm. Eng. 2021. V. 190. P. 116751. https://doi.org/10.5281/zenodo.15807733
  20. Marin J.M., Zalba B., Cabeza L.F., Mehling H. // Meas. Sci. Technol. 2003. V. 14. № 2. P. 184. https://doi.org/10.1088/0957-0233/14/2/305
  21. D’Avignon K., Kummer M. // J. Therm. Sci. Eng. Appl. 2015. V. 7. № 4. P. 041015. https://doi.org/10.1115/1.4031220
  22. Mehling H., Ebert H.P., Schossig P. // Th IIR Conference on Phase Change Materials and Slurries for Refrigeration and Air Conditioning. Dinan. France. 2006. P. 8.
  23. Theresa L., Vetraj R. // Mat. Res. Exp. 2019. V. 6. № 12. P. 125527.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences