Framework tetrarhodanomercurate complexes of Mn(II), Fe(II), Cd(II) with nicotinamide: synthesis and crystal structure

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

New bimetallic complexes of the composition [MHg(C6H6N2O)2 (SCN)4] have been synthesized, where M = Mn (I), Fe (II), Cd (III); C6H6N2O is nicotinamide (NA). The compounds were obtained from aqueous solutions and studied by CHNS/O analysis, IR spectroscopy, inductively coupled plasma optical emission spectrometry (ICP-OES) and X-ray diffraction analysis (XRD). Compounds I–III are isostructural and crystallize in the monoclinic syngony (space group C2/c). The coordination environment of the M atom is formed by two donor nitrogen atoms of two monodentately coordinated NA and four nitrogen atoms of the SCN groups, which form bridges between the M2+ and Hg2+ ions, connecting them into a three-dimensional framework. Hg2+ ions have a tetrahedral coordination environment consisting of four S atoms of four SCN groups.

About the authors

D. A. Barantsev

Kuzbass State Technical University named after T.F. Gorbachev

Email: ctg.htnv@kuzstu.ru
Kemerovo, 650000 Russia

N. V. Pervukhina

Nikolaev Institute of Inorganic Chemistry of SB RAS (NIIC SB RAS)

Email: ctg.htnv@kuzstu.ru
Novosibirsk, 630092 Russia

N. V. Kuratieva

Nikolaev Institute of Inorganic Chemistry of SB RAS (NIIC SB RAS)

Email: ctg.htnv@kuzstu.ru
Novosibirsk, 630092 Russia

T. G. Cherkasova

Kuzbass State Technical University named after T.F. Gorbachev

Author for correspondence.
Email: ctg.htnv@kuzstu.ru
Kemerovo, 650000 Russia

References

  1. Li S., Li P., Tian Y. et al. // Bioorg. Chem. 2024. V. 153. P. 107974. https://doi.org/10.1016/j.bioorg.2024.107974
  2. Song Y.H., Bian O., Wang F. et al. // Coord. Chem. Rev. 2025. V. 524. P. 216299. https://doi.org/10.1016/j.ccr.2024.216299
  3. Zhou N., Guo X., Shao X. // J. Lumin. 2022. V. 251. P. 119222. https://doi.org/10.1016/j.jlumin.2022.119222
  4. Bregier-Jarzebowska R., Hoffmann S.K., Łomozik L. et al. // Polyhedron. 2019. V. 173. P. 114137. https://doi.org/10.1016/j.poly.2019.114137
  5. Yohan R.K., Jagannathan M., Sivalingam G. // J. Ind. Eng. Chem. 2025. V. 145. P. 234. https://doi.org/10.1016/j.jiec.2024.12.076
  6. Ahmad I., Ansari F.A., Siddiqi W.A. et al. // Energy Convers. Storage Appl. 2023. P. 475. https://doi.org/10.1016/B978-0-323-91206-8. 00023-6
  7. Juris A., Balzani V., Barigelletti F. et al. // Coord. Chem. Rev. 1988. V. 84. P. 85. https://doi.org/10.1016/0010-8545(88)80032-8
  8. Auria M., Frenna V., Monari M. et al. // Tetrahedron Lett. 2015. V. 56. № 47. P. 6598. https://doi.org/10.1016/j.tetlet.2015.10.030
  9. Ohkoshi S., Tokoro H. // Acc. Chem. Res. 2012. V. 45. № 10. P. 1749. https://doi.org/10.1021/ar300068k
  10. Chunxue Y., He X., Xutang T. // Inorg. Chem. Commun. 2017. V. 86. P. 145. https://doi.org/10.1016/j.inoche.2017.10.009
  11. Pramanik A., Das P. // Polyhedron. 2010. V. 29. P. 2999. https://doi.org/10.1016/j.poly.2010.08.004
  12. Chand B.G., Ray U.S., Mostafa G. et al. // Inorg. Chim. Acta. 2005. V. 358. P. 1927. https://doi.org/10.1016/j.ica.2004.12.046
  13. Du H.J., Wang C.H., Li Y. et al. // Inorg. Chim. Acta. 2015. V. 430. P. 46. http://dx.doi.org/10.1016/j.ica.2015.02.024
  14. Jian F.F., Xiao H.L., Liu F.Q. // J. Solid State Chem. 2006. V. 179. P. 3695. http://dx.doi.org/10.1016/j.jssc.2006.08.001
  15. Sun W., Luo L., Feng Y. et al. // Angew. Chem. Int. Ed. 2019. V. 59. P. 9914. http://dx.doi.org/10.1002/anie.201908712
  16. Weil M., Häuslera T. // Acta Crystallogr., Sect. E: Struct. Rep. Online. 2014. V. 70. P. 48. http://dx.doi.org/10.1107/S1600536814009532
  17. Zhaoxun L., Ning Z., Fengxia Y. et al. // Z. Kristallogr. NCS. 2011. V. 226. P. 289. https://doi.org/10.1524/ncrs.2011.0128
  18. Chunyan L., Fenghua C., Heng Z. et al. // Spectrochim. Acta, Part A. 2015. V. 134. P. 367. http://dx.doi.org/10.1016/j.saa.2014.06.080
  19. Al-Noor T.H., Aziz M.R., Al-Jeboori A.T. // J. Chem. Pharm. Res. 2014. V. 6. P. 1225.
  20. Садиков Г.Г. Кокшарова Т.В., Анцышкина А.С. и др. // Кристаллография. 2008. Т. 53. № 4. С. 668.
  21. Кокшарова Т.В., Садиков Г.Г., Анцышкина А.С. и др. // Журн. неорган. химии. 2006. Т. 51. № 6. С. 966.
  22. Kozlevcar B., Leban I., Turel I. et al. // Polyhedron. 1999. V. 18. P. 755. https://doi.org/10.1016/s0277-5387(98)00350-7
  23. Hokelek T., Süzen Y., Tercan B. et al. // Acta Crystallogr., Sect. E: Struct. Rep. Online. 2010. V. E66. P. m807. https://doi.org/10.1107/S1600536810022415
  24. Gör K., Kürkçüoğlu G.S., Yeşilel O.Z. et al. // J. Mol. Struct. 2014. V. 1060. P. 166. http://dx.doi.org/10.1016/j.molstruc.2013.12.024
  25. Bruker AXS Inc., APEX2 (Version 1.08), SAINT (Version 7.03), and SADABS (Version 2.11). Bruker Advanced X-ray Solutions, Madison, Wisconsin, USA, 2004.
  26. Sheldrick G.M. // Acta Crystallogr. 2015. V. C71. P. 3. https://doi.org/10.1107/S2053229614024218
  27. Химия псевдогалогенидов / Под ред. Голуба А.М., Келера Х., Скопенко В.В. Киев: Вища шк., 1971. 360 с.
  28. Machura B., Switlicka A., Mroziński J. et al. // Polyhedron. 2010. V. 29. P. 2157. http://dx.doi.org/10.1016/j.poly.2010.04.018
  29. Machura B., Świtlicka A., Mroziński J. et al. // J. Solid State Chem. 2013. V. 197. P. 218. http://dx.doi.org/10.1016/j.jssc.2012.08.041
  30. Cao T., Meng S., Xu Z. et al. // J. Solid State Chem. 2022. V. 315. P. 123455. http://dx.doi.org/10.1016/j.jssc.2022.123455
  31. Dziewulska-Kuaczkowska A., Mazur L., Ferenc W. // J. Therm. Anal. Calorim. 2009. V. 96. P. 255. http://dx.doi.org/10.1007/s10973-008-9851-z
  32. Yurdakul O., Kose D.A. // Hittite J. Sci. Eng. 2014. V. 1. P. 51. https://doi.org/10.17350/HJSE19030000008
  33. Bayarı S., Ataç A., Yurdakul S. // J. Mol. Struct. 2003. V. 655. P. 163. http://dx.doi.org/10.1016/S0022-2860(03)00256-4
  34. Анцышкина А.С., Садиков Г.Г., Кокшарова Т.В. и др. / Журн. неорган. химии. 2006. Т. 51. № 10. С. 1671.
  35. Lawal A., Obaleye J. A., Adediji J. F. et al. // Int. J. Chem. Kinet. Mater. Environ. Res. 2014. V. 18. P. 205. http://dx.doi.org/10.4314/jasem.v18i2.8
  36. Gör K., Kürkçüoğlu G.S., Yeşilel O.Z. et al. // J. Mol. Struct. 2014. V. 1060. P. 166. http://dx.doi.org/10.1016/j.molstruc.2013.12.024
  37. Черкасова Т.Г., Первухина Н.В., Куратьева Н.В. и др. // Журн. неорган. химии. 2019. Т. 64. № 4. С. 365.
  38. Авдеева В.В., Малинина Е.А., Жижин К.Ю., Кузнецов Н.Т. // Журн. неорган. химии. 2020. Т. 65. № 4. С. 495.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences