Thermodynamic and High-Temperature Properties of KFe0.33W1.67O6

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Рұқсат ақылы немесе тек жазылушылар үшін

Аннотация

This paper presents the results of a study of the KFe0.33W1.67O6 system. The compound was obtained by a solid-phase synthesis method at a temperature of 1073 K. The structural, morphological, and spectroscopic properties of KFe0.33W1.67O6 were characterized using XRD, SEM-EDS. The compound crystallizes in a cubic lattice with the space group Fd–3m (227). The obtained lattice parameter a = 10.3697 (3) Å. The phase transitions of KFe0.33W1.67O6 were determined by low-temperature and high-temperature X-ray diffraction. The temperature dependence of heat capacity of KFe0.33W1.67O6 has been measured for the first time in the range from 5 to 638 K by precision adiabatic vacuum calorimetry and differential scanning calorimetry. The experimental data were used to calculate standard thermodynamic functions, namely the heat capacity C∘p∘(T), enthalpy H°(T) − H°(0), entropy S°(T) − S°(0), and Gibbs function G°(T) − H°(0), for the range from T → 0 to 630 K.

Авторлар туралы

A. Shvareva

National Research Lobachevsky State University of Nizhny Novgorod

Email: knyazevav@gmail.com
603950, Nizhny Novgorod, Russia

V. Smirnova

National Research Ogarev Mordovia State University

Email: knyazevav@gmail.com
430005, Saransk, Russia

N. Smirnova

National Research Lobachevsky State University of Nizhny Novgorod

Email: knyazevav@gmail.com
603950, Nizhny Novgorod, Russia

A. Markin

National Research Lobachevsky State University of Nizhny Novgorod

Email: knyazevav@gmail.com
603950, Nizhny Novgorod, Russia

D. Fukina

National Research Lobachevsky State University of Nizhny Novgorod

Email: knyazevav@gmail.com
603950, Nizhny Novgorod, Russia

A. Knyazev

National Research Lobachevsky State University of Nizhny Novgorod

Хат алмасуға жауапты Автор.
Email: knyazevav@gmail.com
603950, Nizhny Novgorod, Russia

Әдебиет тізімі

  1. Deepa M., Prabhakar Rao P., Radhakrishnan A.N. et al. // Mater.Res.Bull. 2009. V. 44. P. 1481.
  2. Sibi K.S., Radhakrishnan A.N., Deepa M. et al. // Solid State Ion. 2009. V. 180. P. 1164.
  3. Díaz-Guillén J.A., Fuentes A.F., Díaz-Guillén M.R. et al. // J. Power Sources. 2009. V. 186. P. 349.
  4. Knoke G.T., Niazi A., Hil J.M. et al. // Matter Mater. Phys. 2007. V. 76. P. 054439–1.
  5. Hirayama M., Sonoyama N., Yamada A. et al. // J. Lumin. 2008. V. 128. P. 1819.
  6. Zhang A., Lu M., Yang Z. et al. // Solid State Sci. 2008. V. 10. P. 74.
  7. Ewing R.C. // Proc. Natl. Acad. Sci. U.S.A. 1999. V. 96. P. 3432.
  8. Ewing R.C., Weber W.J., Lian J. // J. Appl. Phys. 2004. V. 95. P. 5949.
  9. Ringwood A.E., Kesson S.E., Ware N.G. et al. // Nature. 1979. V. 278. P. 219.
  10. Shlyakhtina A.V., Abrantes J.C.C., Levchenko A.V. et al. // Solid State Ion. 2006. V. 177. P. 1149.
  11. Abrantes J.C.C., Levchenko A., Shlyakhtina A.V. et al. // Solid State Ion. 2006. V. 177. P. 1785.
  12. Shlyakhtina A.V., Abrantes J.C.C., Levchenko A.V. et al. // Mater. Sci. Forum. 2006. V. 515. P. 422.
  13. Shlyakhtina A.V., Knotko A.V., Boguslavskii M.V. et al. // Solid State Ion. 2006. V. 176. P. 2297.
  14. Sohn J.M., Kim M.R., Woo S.I. // Catal. Today. 2003. V. 83. P. 289.
  15. Ting-ting T., Li-xi W., Qi-tu Z. // J. Alloy. Compd. 2009. V. 486. P. 606.
  16. Guje R., Ravi G., Palla S. et al. // Mater. Sci. Eng. B. 2015. V. 198. P. 1.
  17. Ravi G., Sravan Kumar K., Guje R. et al. // J Solid State Chem. 2016. V. 233. P. 342.
  18. Ravi R., Palla S., Kumar Veldurthi N. et al. // Int. J. Hydrog. Energy. 2014. V. 39. P. 15352e.
  19. Knyazev A.V., Tananaev I.G., Kuznetsova N.Yu. et al. // Thermochim Acta. 2010. V. 499. P. 155.
  20. Knyazev A.V., Mączka M., Kuznetsova N.Yu. et al. // J. Therm. Anal. Calorim. 2009. V. 98. P. 843.
  21. Knyazev A.V., Chernorukov N.G., Smirnova N.N. et al. // Thermochim Acta. 2008. V. 470. P. 47.
  22. Knyazev A.V., Paraguassu W., Blokhina A.G. et al. // Thermodynamic and spectroscopic properties of KNbTeO6. J. Chem. Thermodynamics. 2017. V. 107. P. 26.
  23. Coelho A.A. // J. Appl. Crystallogr. 2018. V. 51. P. 210.
  24. Smirnova N.N., Letyanina I.A., Larina V.N. et al. // Chem. Thermodyn. 2009. V. 41. P. 46.
  25. Babel D., Pausewang D., Viebahn W. et al. // Z NATURFORSCH B. 1967. V. 22. P. 1219.
  26. Chase M.W. NIST-JANAF thermochemical tables (Monograph 9) // J. Phys. Chem. Ref. Data 1998. P. 59.
  27. Cox J.D., Wagman D.D., Medvedev V.A. Codata Key Values for Thermodynamics. New York, 1984. 60 p.
  28. Mączka M., Knyazev A.V., Kuznetsova N.Yu. et al. // J. Raman Spectrosc. 2011. V. 42. P. 529.
  29. Knyazev A.V., Mączka M., Kuznetsova N.Yu. // Thermochim Acta. 2010. V. 506. P. 20.

Қосымша файлдар


© А.Г. Шварева, В.М. Кяшкин, Н.Н. Смирнова, А.В. Маркин, Д.Г. Фукина, А.В. Князев, 2023