IMMUNOCHROMATOGRAPHIC TEST SYSTEM FOR THE DETERMINATION OF BISPHENOL A WITH MAGNETIC CONCENTRATION

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

Bisphenol A (BPA) is widely used as a hardener in the production of plastics. However, its release and circulation in ecosystems lead to contamination of drinking water and food products, accompanied by a negative impact on human health, primarily on the endocrine system. In this regard, there is a need for simple and efficient BPA monitoring tools. The paper presents a combination of two approaches for this purpose – the use of magnetic particles (MP) as an antibody carrier and immunochromatographic test strips for recording labeled immune complexes. The visual detection limit of BPA was 10 μg/ml, the instrumental limit was 55 ng/ml, the working range of quantitative determination was 0.1–10 μg/ml. The efficiency of using the MP conjugate for analyte concentration was demonstrated, allowing the detection limit to be reduced by ~200 times. The developed ICA is suitable for qualitative control of the presence and quantitative determination of BPA content in drinking and natural water samples (the detection rate is in the range of 94–106%).

Sobre autores

N. Taranova

A.N. Bakh Institute of Biochemistry, Federal Research Center "Fundamentals of Biotechnology" of the Russian Academy of Sciences

Email: email@example.com
Moscow, Russia

A. Bulanaya

A.N. Bakh Institute of Biochemistry, Federal Research Center "Fundamentals of Biotechnology" of the Russian Academy of Sciences

Email: email@example.com
Moscow, Russia

A. Zherdev

A.N. Bakh Institute of Biochemistry, Federal Research Center "Fundamentals of Biotechnology" of the Russian Academy of Sciences

Email: email@example.com
Moscow, Russia

B. Dzantiev

A.N. Bakh Institute of Biochemistry, Federal Research Center "Fundamentals of Biotechnology" of the Russian Academy of Sciences

Email: dzantiev@inbi.ras.ru
Moscow, Russia

Bibliografia

  1. Sun F., Kang L., Xiang X., Li H., Luo X., Luo R., Lu C., Peng X. Recent advances and progress in the detection of bisphenol A // Anal. Bioanal. Chem. 2016. V. 408. P. 6913. https://doi.org/10.1007/s00216-016-9791-6
  2. Aricov L., Leontieg A.R. Adsorption of bisphenol A from water using chitosan-based gels // Gels. 2025. V. 11. № 3. P. 180. https://doi.org/10.3390/gels11030180
  3. Michenzi C., Myers S. H., Chiarotto I. Bisphenol A in water systems: Risks to polycystic ovary syndrome and biochar-based adsorption remediation: A review // Chem. Biodivers. 2024. V. 21. № 12. Article e202401037. https://doi.org/10.1002/cbdv.202401037
  4. Sirasanagandla S.R., Al-Huseini I., Sakr H., Mogadass M., Das S., Juliana N., Abu I.F. Natural products in mitigation of bisphenol A toxicity: Future therapeutic use // Molecules. 2022. V. 27. № 17. P. 5384. https://doi.org/10.3390/molecules27175384
  5. Adhikary K., Kumar S., Chatterjee P., Dey R., Maiti R., Chakrabortty S., Ahuja D., Karak P. Unveiling bisphenol A toxicity: Human health impacts and sustainable treatment strategies // Horm. Mol. Biol. Clin. Invest. 2024. V. 45. № 4. P. 171. https://doi.org/10.1515/hmbci-2024-0034
  6. Mishra A., Goel D., Shankar S. Bisphenol A contamination in aquatic environments: a review of sources, environmental concerns, and microbial remediation // Environ. Monit. Assess. 2023. V. 195. № 11. P. 1352. https://doi.org/10.1007/s10661-023-11977-1
  7. Huelsmann R.D., Will C., Carasek E. Determination of bisphenol A: Old problem, recent creative solutions based on novel materials // J. Sep. Sci. 2021. V. 44. № 6. P. 1148. https://doi.org/10.1002/jssc.202000923
  8. Yuan M., Chen S., Zeng C., Fan Y., Ge W., Chen W. Estrogenic and non-estrogenic effects of bisphenol A and its action mechanism in the zebrafish model: An overview of the past two decades of work // Environ. Int. 2023. V. 176. Article 107976. https://doi.org/10.1016/j.envint.2023.107976
  9. Stanojević M., Soliner Dolenc M. Mechanisms of bisphenol A and its analogs as endocrine disruptors via nuclear receptors and related signaling pathways // Arch. Toxicol. 2025. V. 99. P. 1. https://doi.org/10.1007/s00204-025-04025-z
  10. Alva-Gallegos R., Carazo A., Mladênka P. Toxicity overview of endocrine disrupting chemicals interacting in vitro with the oestrogen receptor // Environ. Toxicol. Pharmacol. 2023. V. 99. Article 104089. https://doi.org/10.1016/j.etap.2023.104089
  11. Darbre P.D. Endocrine disruptors and obesity // Curr. Obes. Rep. 2017. V. 6. P. 18. https://doi.org/10.1007/s13679-017-0240-4
  12. Cabatou N.J., Wadia P.R., Rubin B.S., Zalko D., Schaeberle C.M., Askenase M.H., Gadbois J.L., Tharp A.P., Whitt G.S., Sonnenschein C., Soto A.M. Perinatal exposure to environmentally relevant levels of bisphenol A decreases fertility and fecundity in CD-1 mice // Environ. Health Persp. 2011. V. 119. № 4. P. 547. https://doi.org/10.1289/ehp.1002559
  13. Tarafdar A., Sirohi R., Balakumaran P.A., Reshmy R., Madhavan A., Sindhu R., Binod P., Kumar Y., Kumar D., Sim S.J. The hazardous threat of Bisphenol A: Toxicity, detection and remediation // J. Hazard. Mater. 2022. V. 423. Article 127097. https://doi.org/10.1016/j.jhazmat.2021.127097
  14. dos Santos Costa M.J., Araújo J.K.S., Moura J.K.L., da Silva Moreno L.H., Pereira P.A., da Silva Santos R., Moura C.V.R. A brief review of detection and removal of bisphenol A in aqueous media // Water, Air, Soil Pollut. 2022. V. 233. № 9. P. 362. https://doi.org/10.1007/s11270-022-05834-z
  15. Bousouman R., Leso V., Iavicoli I., Huuskonen P., Viegas S., Porras S. P., Santonen T., Frery N., Robert A., Ndaw S. Biomonitoring of occupational exposure to bisphenol A, bisphenol S and bisphenol F: A systematic review // Sci. Total Environ. 2021. V. 783. Article 146905. https://doi.org/10.1016/j.scitotenv.2021.146905
  16. Verma D., Yadav A.K., Rathee G., Dhingra K., Mukherjee M.D., Solanki P.R. Prospects of nanomaterial-based biosensors: A smart approach for bisphenol-A detection in dental sealants // J. Electrochem. Soc. 2022. V. 169. № 2. Article 027516. https://doi.org/10.1149/1945-7111/ac51fc
  17. Рудяков Ю.О., Селемене В.Г., Хорохордин А.М., Волков А.А. Сорбционные и хроматографические процессы // Журн. аналит. химии. 2023. Т. 23. № 4. С. 642 https://doi.org/10.17308/sorpchrom.2023.23/11572
  18. Zhang B., Wei J., Wang Z., Li X., Liu Y. Sample preparation and analytical methods for bisphenol endocrine disruptors from Foods: State of the art and future perspectives // Microchem. J. 2024. V. 204. Article 111033. https://doi.org/10.1016/j.microc.2024.111033
  19. Ahmadpourmi H., Moradzehi M., Velayati M., Taghizadeh S. F., Hashemzaei M., Rezaee R. Global occurrence of bisphenol compounds in breast milk and infant formula: A systematic review // Food Res. Int. 2025. V. 211. Article 116389. https://doi.org/10.1016/j.foodres.2025.116389
  20. Cunha S., Cunha C., Ferreira A., Fernandes J. Determination of bisphenol A and bisphenol B in canned seafood combining QuEChERS extraction with dispersive liquid–liquid microextraction followed by gas chromatography–mass spectrometry // Anal. Bioanal. Chem. 2012. V. 404. P. 2453. https://doi.org/10.1007/s00216-012-6389-5
  21. Karsauliya K., Bhaieria M., Sonker A., Singh S.P. Determination of bisphenol analogues in infant formula products from India and evaluating the health risk in infants associated with their exposure // J. Agric. Food Chem. 2021. V. 69. № 13. P. 3932. https://doi.org/10.1021/acs.jafc.1c00129
  22. Petrarca M.H., Perez M.A. F., Tjouni S.A.V. Bisphenol A and its structural analogues in infant formulas available in the Brazilian market: Optimisation of a UPLC-MS/MS method, occurrence, and dietary exposure assessment // Food Res. Int. 2022. V. 160. Article 111692. https://doi.org/10.1016/j.foodres.2022.111692
  23. Zhang Y., Lei Y., Lu H., Shi L., Wang P., Ali Z., Li J.. Electrochemical detection of bisphenols in food: A review // Food Chem. 2021. V. 346. Article 128895. https://doi.org/10.1016/j.foodchem.2020.128895
  24. Bedair A., Hamed M., Mansour F.R. Reshaping capillary electrophoresis with state-of-the-art sample preparation materials: Exploring new horizons // Electrophoresis. 2025. V. 46. P. 494. https://doi.org/10.1002/elps.202400114
  25. Ragavan K., Rastogi N.K., Thakur M. Sensors and biosensors for analysis of bisphenol-A // Trends Anal. Chem. 2013. V. 52. P. 248. https://doi.org/10.1016/j.trac.2013.09.006
  26. Zheng A., Andou Y. Detection and remediation of bisphenol A (BPA) using graphene-based materials: mini-review // Int. J. Environ. Sci. Technol. 2022. V. 19. № 7. P. 6869. https://doi.org/10.1007/s13762-021-03512-x
  27. Tian W., Wang L., Lei H., Sun Y., Xiao Z. Antibody production and application for immunoassay development of environmental hormones: A review // Chem. Biol. Technol. Agric. 2018. V. 5. P. 1. https://doi.org/10.1186/s40538-018-0117-0
  28. Elfadil D., El-Sayyad G.S., Ali G.A.M. Metal-organic framework composite-based biosensors: Biomedical applications / Handbook of Nanosensors / Eds. Ali G.A.M., Chong K.F., Makhlouf A.S.H. Cham: Springer, 2024. https://doi.org/10.1007/978-3-031-47180-3_40
  29. Chen C., Luo J., Li C., Ma M., Yu W., Shen J., Wang Z. Molecularly imprinted polymer as an antibody substitution in pseudo-immunoassays for chemical contaminants in food and environmental samples // J. Agric. Food Chem. 2018. V. 66. № 11. P. 2561. https://doi.org/10.1021/acs.jafc.7b05577
  30. de Cezaro A.M., Ballen S.C., Hoehne L., Steffens J., Steffens C. Cantilever nanobiosensors applied for endocrine disruptor detection in water: A review // Water, Air, Soil Pollut. 2021. V. 232. № 6. P. 225. https://doi.org/10.1007/s11270-021-05179-z
  31. Verma M.L., Rani V. Biosensors for toxic metals, polychlorinated biphenyls, biological oxygen demand, endocrine disruptors, hormones, dioxin, phenolic and organophosphorus compounds: A review // Environ. Chem. Lett. 2021. V. 19. № 2. P. 1657. https://doi.org/10.1007/s10311-020-01116-4
  32. Bai F., Bu T., Wang Z., Shao B. Integration of a new generation of immunochromatographic assays: Recent advances and future trends // Nano Today. 2024. V. 57. Article 102403. https://doi.org/10.1016/j.nantod.2024.102403
  33. Liu S., Liao Y., Shu R., Sun J., Zhang D., Zhang W., Wang J. Evaluation of the multidimensional enhanced lateral flow immunoassay in point-of-care nanosensors // ACS Nano. 2024. V. 18. № 40. P. 27167. https://doi.org/10.1021/acsnano.4c06564
  34. Raysyan A., Schneider R.J. Development of a lateral flow immunoassay (LFIA) to screen for the release of the endocrine disruptor Bisphenol A from polymer materials and products // Biosensors. 2021. V. 11. № 7. Article 231. https://doi.org/10.3390/bios11070231
  35. Maiolini E., Ferri E., Pitasi A. L., Montoya A., Di Giovanni M., Errani E., Girotti S. Bisphenol A determination in baby bottles by chemiluminescence enzyme-linked immunosorbent assay, lateral flow immunoassay and liquid chromatography tandem mass spectrometry // Analyst. 2014. V. 139. № 1. P. 318. https://doi.org/10.1039/C3AN00552F
  36. Mei Z., Deng Y., Chu H., Xue F., Zhong Y., Wu J., Yang H., Wang Z., Zheng L., Chen W. Immunochromatographic lateral flow strip for on-site detection of bisphenol A // Microchim. Acta. 2013. V. 180. P. 279. https://doi.org/10.1007/s00604-012-0930-2
  37. Zhang L., Chen Y., Zhu Q., Ji W., Zhao S. SERS based immunochromatographic assay for rapid and quantitative determination of bisphenol A // Vib. Spectrosc. 2021. V. 113. Article 103225. https://doi.org/10.1016/j.vibspec.2021.103225
  38. Ling S., Xu A., Sun M., Li X., Huang Y., Xu Y., Huang J., Xie T., Wang S. Sensitive and rapid detection of bisphenol A using signal amplification nanoparticles loaded with anti-bisphenol A monoclonal antibody // Food Chem. X. 2024. V. 24. Article 101903. https://doi.org/10.1016/j.fochx.2024.101903
  39. Zhu N., Yuan K., Xiong D., Ai F., Zeng K., Zhao B., Zhang Z., Zhao H. A high-throughput fluorescence immunoassay based on conformational locking strategy of MOFs to enhance AIE effect of CuNCs-CS for bisphenol S analysis in food samples // Chem. Eng. J. 2023. V. 462. Article 142129. https://doi.org/10.1016/j.cej.2023.142129
  40. Xiong Y., Leng Y., Li X., Huang X., Xiong Y. Emerging strategies to enhance the sensitivity of competitive ELISA for detection of chemical contaminants in food samples // Trends Anal. Chem. 2020. V. 126. Article 115861. https://doi.org/10.1016/j.trac.2020.115861
  41. Jaria G., Calisto V., Otero M., Esteves V.I. Monitoring pharmaceuticals in the aquatic environment using enzyme-linked immunosorbent assay (ELISA) – A practical overview // Anal. Bioanal. Chem. 2020. V. 412. P. 3983. https://doi.org/10.1007/s00216-020-02509-8
  42. Maison R.S. ELISA-based biosensors // ELISA: Methods and Protocols. 2023. P. 225.
  43. Aslam S., Zhang Z., Muhammad A. Review on validation of enzyme linked immunosorbent assay (Elisa) techniques for detection and quantification of different contaminant in aquatic environment // J. Bioresour. Manag. 2023. V. 10. № 3. P. 6.
  44. Berlina A.N., Komova N.S., Serebrennikova K.V., Zherdev A.V., Dzantiev B.B. Comparison of conjugates obtained using DMSO and DMF as solvents in the production of polyclonal antibodies and ELISA development: A case study on Bisphenol A // Antibodies. 2024. V. 13. № 4. Article 89. https://doi.org/10.3390/antib13040089
  45. Таранова Н.А., Буланая А.А., Жердев А.В., Дзантиев Б.Б. Высокочувствительная иммунохроматография на основе концентрирования аналитов конъюгатами антител и стабилизированных магнитных частиц // Аналитика и контроль. 2024. T. 28. № 4. C. 345. https://doi.org/10.15826/analitika.2024.28.4.001
  46. Poh J.-J., Wu W.-L., Goh N.W.-J., Tan S.M.-X., Gan S.K.-E. Spectrophotometer on-the-go: The development of a 2-in-1 UV-Vis portable Arduino-based spectrophotometer // Sens. Actuators A: Phys. 2021. V. 325. Article 112698. https://doi.org/10.1016/j.sna.2021.112698
  47. Kent U. M. Purification of antibodies using ammonium sulfate fractionation or gel filtration / Immunocytochemical Methods and Protocols / Ed. Javois L.C. Humana Press, 1999. P. 11. https://doi.org/10.1385/1-59259-213-9:11

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025