Double negative media based on magnetic metamaterials and semiconductors for the microwave frequency range

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The results of theoretical study and MaxLLG program simulation of the ferromagnetic metamaterials with metallic (non-magnetic) inclusions, as well as the bigyrotropic media with the properties of a ferromagnetic semiconductor are presented. The possibility of obtaining the double negative media from such materials in that a backward electromagnetic wave exists at microwave frequencies is demonstrated.

Full Text

Restricted Access

About the authors

S. V. Grishin

Saratov State University, named after N.G. Chernyshevsky

Author for correspondence.
Email: sergrsh@yandex.ru
Russian Federation, Astrakhanskaya Str., 83, Saratov, 410012

M. D. Amel’chenko

Saratov State University, named after N.G. Chernyshevsky

Email: sergrsh@yandex.ru
Russian Federation, Astrakhanskaya Str., 83, Saratov, 410012

A. V. Zhabova

Saratov State University, named after N.G. Chernyshevsky

Email: sergrsh@yandex.ru
Russian Federation, Astrakhanskaya Str., 83, Saratov, 410012

F. Yu. Ogrin

University of Exeter; MaxLLG Ltd.

Email: sergrsh@yandex.ru

Department of Physics, University of Exeter

United Kingdom, Exeter EX4 4QL; Exeter Science Park, Exeter EX5 2FN

S. A. Nikitov

Kotelnikov Institute of Radioengineering and Electronics of RAS

Email: sergrsh@yandex.ru
Russian Federation, Mokhivaya Str., 11, build. 7, Moscow, 125009

References

  1. Metamaterials Handbook / Ed. by F. Capolino. Boca Raton: CRC Press/Taylor & Francis, 2009.
  2. Евтихов М.Г., Никитов С.А. // РЭ. 2008. Т. 53. № 3. C. 261.
  3. Гуревич А.Г. Ферриты на сверхвысоких частотах. М.: Физматлит, 1960.
  4. Ахиезер А.И. Электродинамика плазмы. М.: Наука, 1974.
  5. Веселаго В.Г. // Успехи физ. наук. 1967. Т. 92. № 3. С. 517.
  6. Шараевский Ю.П. // Изв. вузов. Прикладная нелинейная динамика. 2012. Т. 20. № 1. С. 33. https://doi.org/10.18500/0869-6632-2012-20-1-33-42
  7. Cтил М., Вюраль Б. Взаимодействие волн в плазме твердого тела. М.: Атомиздат, 1973.
  8. Smith D.R., Padilla W.J., Vier D.C. et al. // Phys. Rev. Lett. 2000. V. 84. № 18. P. 4184. https://doi.org/10.1103/PhysRevLett.84.4184
  9. Pendry J.B. // Phys. Rev. Lett. 2000. V. 85. № 18. P. 3966. https://doi.org/10.1103/PhysRevLett.85.3966
  10. Вашковский А.В., Локк Э.Г. // Успехи физ. наук. 2004. Т. 174. № 6. С. 657. https://doi.org/10.3367/UFNr.0174.200406e.0657
  11. He Y., He P., Yoon S.D. et al. // J. Magn. Magn. Mat. 2007. V. 313. P. 187. https://doi.org/10.1016/j.jmmm.2006.12.031
  12. Zhao H., Zhou J., Zhao Q. et al. // Appl. Phys. Lett. 2007. V. 91. № 13. P. 131107. https://doi.org/10.1063/1.2790500
  13. Bi K., Zhou J., Zhao H. et al. // Opt. Express. 2013. V. 21. № 9. P. 10746. https://doi.org/10.1364/OE.21.010746
  14. Rachford F.J., Armstead D.N., Harris V.G., Vittoria C. // Phys. Rev. Lett. 2007. V. 99. № 5. P. 057202. https://doi.org/10.1103/PhysRevLett.99.057202)
  15. Huang Y.J., Wen G.J., Li T.Q. et al. // IEEE Antennas and Wireless Propagation Lett. 2012. V. 11. P. 264. https://doi.org/10.1109/LAWP.2012.2189090
  16. Dewar G. // New J. Phys. 2005. V. 7. P. 161. https://doi.org/10.1088/1367-2630/7/1/161
  17. Couture S., Gauthier J., Kodera T., Caloz C. // IEEE Antennas and Wireless Propagation Lett. 2010. V. 9. P. 1022. https://doi.org/10.1109/LAWP.2010.2089597
  18. Гришин С.В., Амельченко М.Д., Шараевский Ю.П., Никитов С.А. // Письма в ЖТФ. 2021. Т. 47. № 18. С. 32. https://doi.org/10.21883/PJTF.2021.18.51470.18873
  19. Amel’chenko M.D., Grishin S.V., Ogrin F.Y., Nikitov S.A. // Phys. Rev. B. 2023. V. 108. № 22. P. 224401. https://doi.org/10.1103/PhysRevB.108.224401
  20. Amel’chenko M.D., Grishin S.V., Ogrin F.Y., Nikitov S.A. // Appl. Phys. Lett. 2025. V. 126. № 10. P. 101702. https://doi.org/10.1063/5.0250416
  21. Гришин С.В., Богомолова А.В., Никитов С.А. // Письма в ЖТФ. 2022. Т. 48. № 5. С. 39. https://doi.org/10.21883/PJTF.2022.05.52156.18955
  22. Bogomolova A.V., Ogrin F.Yu., Nikitov S.A., Grishin S.V. // J. Magn. Magn. Mat. 2023. V. 587. Article No. 171278. https://doi.org/10.1016/j.jmmm.2023.171278
  23. Bogomolova A.V., Grishin S.V., Nikitov S.A. // IEEE Trans. 2024. V. MAG-60. № 9. Pt.1. Article No. 2400305. https://doi.org/10.1109/TMAG.2024.3422797
  24. Богомолова А.В., Романенко Д.В., Гришин С.В. // Письма в ЖТФ. 2025. Т. 51. № 2. С. 47. https://doi.org/10.61011/PJTF.2025.02.59558.20060

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Schematic images of the analyzed structures: (a) – FM medium; (b) – FM metamaterial; (c) – enlarged fragment of the periodic lattice of the FM metamaterial, modeled in the MaxLLG program.

Download (117KB)
3. Fig. 2. Frequency dependences of the effective material parameters µeff (curve 1) and εeff (curve 2) of (a) the FM medium and (b) the FM metamaterial. Region I is the DPS medium, region II is the MNG medium, region III is the DNG medium, and region IV is the ENG medium. The calculations are performed for H0 = 0.3 T, 4πM0 = 1750 G, εot = 16, r1 = 0.01 cm, r2 = 0.03 cm, and T = 0.2 cm.

Download (93KB)
4. Fig. 3. Dispersion characteristics of TE-EMWs existing in a transversely magnetized FM medium (a, c) and FM metamaterial (b, d). Region I is a DPS medium, region II is a MNG medium, region III is a DNG medium, and region IV is an ENG medium. The results of the analytical theory (a, b) and the results of numerical simulation in MaxLLG (c, d) are shown. The calculations are performed for H0 = 0.3 T, 4πM0 = 1750 G, εот = 16, r1 = 0.01 cm, r2 = 0.03 cm, T = 0.2 cm, and σ = 108 S/m.

Download (158KB)
5. Fig. 4. Frequency dependences of the effective material parameters µeff⏊ (curve 1) and εeff⏊ (curve 2) of a bigyrotropic medium, obtained by changing the electron concentration in the plasma N: 5 × 1011 (a), 2 × 1012 (b), 4 × 1012 (c) and 1017 cm–3 (d). The last value of N corresponds to the electron concentration in the FM semiconductor. Region I is a DPS medium, region II is a MNG medium, region III is a DNG medium and region IV is an ENG medium. The calculations are performed for H0 = 0.3 T, 4πM0 = 1750 G and εот = 16.

Download (161KB)
6. Fig. 5. Dispersion characteristics of TE-EMW existing in a transversely magnetized bigyrotropic medium, obtained by changing the electron concentration in the plasma N: 5 × 1011 (a), 2 × 1012 (b), 4 × 1012 (c) and 1017 cm–3 (d). The last value of N corresponds to the electron concentration in the FM semiconductor. Region I is a DPS medium, region II is a MNG medium, region III is a DNG medium and region IV is an ENG medium. The calculations are performed for H0 = 0.3 T, 4πM0 = 1750 G and εот = 16.

Download (165KB)

Copyright (c) 2025 Russian Academy of Sciences