Nonlinear magnetization dynamics in Bose-Einstein condensation of magnons

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

An equation for the dynamics of a Bose-Einstein condensate of magnons in a ferromagnetic film is presented, derived from quantum mechanical theory. The main interactions influencing the evolution of the condensed state are considered. An autonomous system of first-order differential equations describing the amplitude and phase of condensed magnons is obtained from the equation for their annihilation operator. The phase trajectories of such a system are investigated using the method of constructing phase portraits and determining the stability of stationary points.

全文:

受限制的访问

作者简介

A. Gasanov

Kotelnikov Institute of Radioengineering and Electronics of RAS; Moscow Institute of Physics and Technology (National Research University)

编辑信件的主要联系方式.
Email: gasanov.ad@phystech.edu
俄罗斯联邦, Mokhovaya Str. 11, build. 7, Moscow, 125009; Institutskiy lane, 9, Dolgoprudny, Moscow region, 141701

A. Matveev

Kotelnikov Institute of Radioengineering and Electronics of RAS; Moscow Institute of Physics and Technology (National Research University)

Email: gasanov.ad@phystech.edu
俄罗斯联邦, Mokhovaya Str. 11, build. 7, Moscow, 125009; Institutskiy lane, 9, Dolgoprudny, Moscow region, 141701

A. Safin

Kotelnikov Institute of Radioengineering and Electronics of RAS; National Research University “Moscow Power Engineering Institute”

Email: gasanov.ad@phystech.edu
俄罗斯联邦, Mokhovaya Str. 11, build. 7, Moscow, 125009; Krasnokazarmennaya Str., 14, Moscow, 111250

S. Nikitov

Kotelnikov Institute of Radioengineering and Electronics of RAS; Moscow Institute of Physics and Technology (National Research University); Saratov National Research State University named after N.G. Chernyshevsky

Email: gasanov.ad@phystech.edu
俄罗斯联邦, Mokhovaya Str. 11, build. 7, Moscow, 125009; Institutskiy lane, 9, Dolgoprudny, Moscow region, 141701; Astrakhanskaya Str., 83, Saratov, 410004

参考

  1. Arute F., Arya K., Ryan Babbushet R. et al. // Nature. 2019. V. 574. № 7779. P. 505.
  2. Ladd T.D., Jelezko F., Laflamme R. et al. // Nature. 2010. V. 464. № 7285. P. 45.
  3. Demokritov S.O., Demidov V.E., Dzyapko O. et al. // Nature. 2006. V. 443. № 7110. P. 430.
  4. Rezende S.M. Fundamentals of Magnonics. Cham: Springer Nature, 2020.
  5. Stancil D.D., Prabhakar A. Spin Waves: Theory and Applications. N.Y.: Springer, 2009.
  6. Holstein T., Primakoff H. // Phys. Rev. 1940. V. 58. № 12. P. 1098. http://dx.doi.org/10. 1103/PhysRev.58.1098
  7. Bogoljubov N.N. // Il Nuovo Cimento. 1958. V. 7. № 6. P. 794. http://dx.doi.org/10.1007/BF02745585.
  8. Mohseni M., Qaiumzadeh A., Serga A.A. et al. // New J. Phys. 2020. V. 22. № 8. P. 083080.
  9. Balucani U., Barocchi F., Tognetti V., Brunner G. // Phys. Rev. B. 1972. V. 6. № 11. P. 4356.
  10. De Araujo C.B. // Phys. Rev. B. 1974. V. 10. № 9. P. 3961.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Schematic diagram of the sample under consideration in an external magnetic field. Magnons are pumped by antenna 1, located in the center of the sample, to which alternating current is supplied. The signal is picked up from two antennas 2 and 3 at the edges of the ferromagnetic film.

下载 (81KB)
3. Fig. 2. Graph of the dependence of the square of the amplitude in the equilibrium position on the interaction coefficient. The inset shows an enlarged fragment. The solid curve is the stability region, the dashed curve is the instability region.

下载 (243KB)
4. Fig. 3. Dependences of the real (a) and imaginary (b) parts of the first eigenvalue of the linearized matrix of the system on the interaction coefficient.

下载 (93KB)
5. Fig. 4. Dependences of the real (a) and imaginary (b) parts of the second eigenvalue of the linearized matrix of the system on the interaction coefficient.

下载 (95KB)
6. Fig. 5. Phase portrait of the system at ∼1011.

下载 (324KB)
7. Fig. 6. Phase portrait of the system at ∼1022.

下载 (277KB)

版权所有 © Russian Academy of Sciences, 2025