Dual-polarization ultra-wideband metal-dielectric horn feed

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

A dual-polarization ultra-wideband feed in the form of a metal four-ridge conical horn with a conical two-layer dielectric insert is proposed and investigated. Electrodynamic modeling and optimization of the transition parameters are carried out using finite element and finite difference methods in the time domain. It is shown that the proposed feed provides matching below the level of -10 dB in the frequency band of 6...40 GHz and the efficiency of a single-mirror offset system of more than 0.5 in the frequency band of 6...30 GHz.

Texto integral

Acesso é fechado

Sobre autores

V. Kaloshin

Kotelnikov Institute of Radio Engineering and Electronics of the Russian Academy of Sciences

Autor responsável pela correspondência
Email: vak@cplire.ru
Rússia, ul. Mokhovaya, 11, building 7, Moscow, 125007

The Thanh Nguyen

Moscow Institute of Physics and Technology (National Research University)

Email: vak@cplire.ru
Rússia, Institutsky per., 9, Dolgoprudny, Moscow region, 141700

Bibliografia

  1. Akgiray A., Weinreb S., Imbriale W. //Proc. 2011 IEEE Int. Symp. on Antennas and Propagation. Spokane. 03-08 Jul. N.Y.:IEEE, 2011. P. 1135.
  2. Akgiray A., Weinreb S. // Proc. 2012 IEEE Int. Conf. on Ultra-Wideband. Syracuse. 17-20 Sept. N.Y.: IEEE, 2012. P. 518.
  3. Solak B., Secmen M., Tekin A. // Appl. Comp. Electromagnetics Soc. J. 2018. V. 33. № 9. P. 1009.
  4. Dong Bin, Yang Jian, Dahlstrom J. et al. // IEEE Trans. 2019. V. АР-67. № 1. P. 585.
  5. Ma Yue, Hwang C.S., Pang F. et al. // IEEE Access. 2020. V. 8. Article No. 81101.
  6. Dunning A., Bowen M., Bourne M. et al. // Proc. 2015 IEEE-APS Topical Conf. on Antennas and Propagation for Wireless Commun. (APWC). Turin. 07-11 Sept. N.Y.:IEEE, 2015. P. 787.
  7. Flygare J., Pantaleev M., Olvhammar S. // Proc. 12th Europ. Conf. on /ntennas and Propagtion (EuCAP 2018). London. 09-13 Apr.N.Y.:IEEE, 2018.Paper No. 0817.
  8. Flygare J., Pantaleev M. // IEEE Trans. 2020. V. АР-68. № 1. P. 207.
  9. Flygare J., Jang Jian., Pollak A.W. et al. // IEEE Trans. 2023. V. АР-71. № 3. P. 2110.
  10. Калошин В.А., Фам В.Ч. // РЭ. 2021. Т. 66. № 7. С. 649.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Longitudinal section of a metal-dielectric horn radiator.

Baixar (60KB)
3. Fig. 2. Excitation node.

Baixar (86KB)
4. Fig. 3. Normalised directional patterns of the irradiator in the E- (a) and H-plane (b) at frequencies 6 (1), 12 (2), 18 (3), 24 (4), 30 GHz (5).

Baixar (171KB)
5. Fig. 4. Dependence of the half-width of the main lobe of the illuminator DN on frequency at the level of -9 (1) and -18 dB (2) in the E- (a) and H-plane (b).

Baixar (128KB)
6. Fig. 5. Frequency dependence of the deviation of the position of the phase centre of the irradiator from the average position in the E- (1) and H-plane (2) and its average position (3).

Baixar (77KB)
7. Fig. 6. Phase diagrams of directivity in the E- (a) and H-plane (b) at frequencies 6 (1), 12 (2), 18 (3), 24 (4) and 30 GHz (5).

Baixar (185KB)
8. Fig. 7. Frequency dependence of the irradiator reflection coefficient from the first (1, 2) and second input (3, 4) calculated using FEM (1, 3) and ICRVO (2, 4).

Baixar (174KB)
9. Fig. 8. Frequency dependence of the decoupling coefficient on the irradiator input using FEM (1), ICRVO (2).

Baixar (139KB)
10. Fig. 9. Dependence of the gain (1, 2) and the magnitude of the FIR (3, 4) of the mirror antenna on the frequency calculated using FEM (1, 3) and ICRVO (2, 4).

Baixar (69KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024