Удаление сингулярности в решении теории упругости на основе неевклидовой модели сплошной среды
- Авторы: Гузев М.А.1, Черныш Е.В.1
 - 
							Учреждения: 
							
- Институт прикладной математики ДВО РАН
 
 - Выпуск: Том 89, № 1 (2025)
 - Страницы: 79-89
 - Раздел: Статьи
 - URL: https://vietnamjournal.ru/0032-8235/article/view/688468
 - DOI: https://doi.org/10.31857/S0032823525010069
 - EDN: https://elibrary.ru/BOAJVF
 - ID: 688468
 
Цитировать
Полный текст
Аннотация
Используя функцию напряжений Эйри для плоско-деформированного состояния сплошной среды, было получено представление для сингулярностей классического поля упругих напряжений. Для неевклидовой модели сплошной среды показано, что структура поля внутренних напряжений плоско-деформированного состояния складывается из классического поля упругих напряжений и неклассического поля напряжений, определяемого через функцию несовместности деформаций. Требование отсутствия особенностей в поле внутренних напряжений позволило скомпенсировать сингулярность в решении теории упругости для нулевой гармоники за счет выбора сингулярности неклассического поля напряжений.
Полный текст
Об авторах
М. А. Гузев
Институт прикладной математики ДВО РАН
							Автор, ответственный за переписку.
							Email: guzev@iam.dvo.ru
				                					                																			                												                	Россия, 							Владивосток						
Е. В. Черныш
Институт прикладной математики ДВО РАН
														Email: guzev@iam.dvo.ru
				                					                																			                												                	Россия, 							Владивосток						
Список литературы
- Sinclair G.B. Stress singularities in classical elasticity I: Removal, interpretation and analysis // Appl. Mech. Rev. 2004. V. 57(4). P. 251–297. https://doi.org/10.1115/1.1762503
 - Sinclair G.B. On ensuring structural integrity for configurations with stress singularities // A Review. Fatigue&Fracture of Engng. Mater.&Struct. 2016. V. 39(5). P. 523–535. https://doi.org/10.1111/ffe.12425
 - Черепанов Г.П. Механика хрупкого разрушения. М.: Наука, 1974. 640 с.
 - Васильев В.В. Сингулярные решения в задачах механики и математической физики // Изв. РАН. МТТ. 2018. № 4. С. 48–65. https://doi.org/10.31857/S057232990000702-2
 - Васильев В.В., Лурье С.А. О сингулярности решения в плоской задаче теории упругости для консольной полосы // Изв. РАН. МТТ. 2013. № 4. С. 40–49.
 - Васильев В.В., Лурье С.А. Нелокальные решения сингулярных задач математической физики и механики // ПММ. 2018. Т. 82. Вып. 4. С. 459–471.
 - Васильев В.В., Лурье С.А. Дифференциальные уравнения и проблема сингулярности решений в прикладной механике и математике // ПМТФ. 2023. Т. 64. № 1. С. 114–127.
 - Lazar M. Non-singular dislocation loops in gradient elasticity // Phys. Lett. A. 2012. V. 376(21). P. 1757–1758.
 - Lazar M. The fundamentals of non-singular dislocations in the theory of gradient elasticity: Dislocation loops and straight dislocations // Int. J. of Solids&Struct. 2013. V. 50(2). P. 352–362. https://doi.org/10.1016/j.ijsolstr.2012.09.017
 - Lazar M., Po G. The non-singular Green tensor of Mindlin’s anisotropic gradient elasticity with separable weak non-locality // Phys. Lett. A. 2015. V. 379(24–25). P. 1538–1543. https://doi.org/10.1016/j.physleta.2015.03.027
 - Po G., Lazar M., Admal N.C., Ghoniem N. A non-singular theory of dislocations in anisotropic crystals // Int. J. of Plasticity. 2018. V. 103. P. 1–22. https://doi.org/10.1016/j.ijplas.2017.10.003
 - Kioseoglou J., Konstantopoulos I., Ribarik G. et al. Nonsingular dislocation and crack fields: implications to small volumes // Microsyst. Technol. 2009. V. 15. P. 117–121. https://doi.org/10.1007/s00542-008-0700-6
 - Aifantis E.C. A note on gradient elasticity and nonsingular crack fields // J. Mech. Behav. Mater. 2011. V. 20. P. 103–105.
 - Konstantopoulos I., Aifantis E.C. Gradient elasticity applied to a crack // J. Mech. Behav. Mater. 2013. V. 22. P. 193–201.
 - Parisis K., Konstantopoulos I., Aifantis E.C. Nonsingular solutions of GradEla models for dislocations: An extension to fractional GradEla // J. of Micromech.&Molec. Phys. 2018. V. 03. № 03n04. A. 1840013. https://doi.org/10.1142/s2424913018400131
 - Guzev M., Liu W., Qi C. Non-Euclidean model for description of residual stresses in planar deformations // Appl. Math. Model. 2021. V. 90. P. 615–623.
 - Годунов С.К. Элементы механики сплошной среды М.: Наука, 1978. 304 с.
 - Gurtin M.E. A generalization of the Beltrami stress functions in continuum mechanics // Arch. for Rat. Mech.&Anal. 1963. V. 13. № 1. P. 321–329. https://doi.org/10.1007/BSF01262700
 - Мясников В.П., Гузев М.А., Ушаков А.А. Структура поля самоуравновешенных напряжений в сплошной среде // Дальневост. матем. ж. 2002. № 2. С. 231–241.
 - Kondo K. On the geometrical and physical foundations of the theory of yielding // Proc. Jap. Nat. Congr. Apll. Mech. 1952. V. 2. P. 41–47.
 - Bilby B.A., Bullough R., Smith E. Continuous distributions of dislocations: a new application of the methods of non-Reimannian geometry // Proc. Roy. Soc. 1955. V. 231(1185). P. 263–273. https://doi.org/10.1098/rspa.1955.0171
 - Новиков С.П., Тайманов И.А. Современные геометрические структуры и поля. М.: МЦНМО, 2005. 584 с.
 - Гузев М.А. Структура кинематического и силового поля в Римановой модели сплошной среды // ПМТФ. 2011. Т. 52. № 5. С. 39–48.
 - Градштейн И.С., Рыжик И.М. Таблицы интегралов, сумм, рядов и произведений / 5-е изд. перераб. при участии Геронимуса Ю.В. и Цейтлина М.Ю. М.: Наука, 1971. 1108 с.
 - Williams M.L. Stress singularities resulting from various boundary conditions in angular corners of plates in extension // J. of Appl. Mech. 1952. V. 19. № 4. P. 526–528.
 
Дополнительные файлы
				
			
						
						
						
					
						
									



