Применение машинного обучения для предсказания фазового поведения интерполиэлектролитных комплексов в водно-солевых средах
- Авторы: Григорян И.В.1,2, Антюфриева Л.А.3, Григорян А.П.1, Коригодский А.А.1, Цзюньян Ч.1, Шусюн Я.1, Пигарева В.А.4, Тищенко А.Е.1, Хомутов Г.Б.1,2, Сыбачин А.В.1
-
Учреждения:
- Московский государственный университет им. М. В. Ломоносова
- Институт радиотехники и электроники имени В.А. Котельникова Российской академии наук
- Сколковский институт науки и технологий
- Институт элементоорганических соединений им. А. Н. Несмеянова Российской академии наук
- Выпуск: Том 87, № 3 (2025)
- Страницы: 187-201
- Раздел: Статьи
- Статья получена: 11.07.2025
- Статья одобрена: 11.07.2025
- Статья опубликована: 14.07.2025
- URL: https://vietnamjournal.ru/0023-2912/article/view/687296
- DOI: https://doi.org/10.31857/S0023291225030028
- EDN: https://elibrary.ru/TAYVPY
- ID: 687296
Цитировать
Аннотация
Водно-солевые растворы интерполиэлектролитных комплексов (ИПЭК) представляют собой классический пример «умных» систем, фазовое равновесие в которых регулируется множеством факторов, связанных как с параметрами полимерных компонентов, так и с физическими и химическими свойствами среды. В данной работе представлена модель, созданная на основе машинного обучения, для прогнозирования области существования водорастворимых ИПЭК. Предложен подход независимого учета физико-химических свойств полиэлектролитов и свойств среды. Разработанная модель универсальна и может быть использована для прогнозирования свойств многокомпонентных систем различной химической природы.
Полный текст

Об авторах
И. В. Григорян
Московский государственный университет им. М. В. Ломоносова; Институт радиотехники и электроники имени В.А. Котельникова Российской академии наук
Email: sybatchin@mail.ru
Россия, Ленинские горы, 1, Москва, 199991; ул. Моховая, 11, корп. 7, Москва, 125009
Л. А. Антюфриева
Сколковский институт науки и технологий
Email: sybatchin@mail.ru
Россия, Большой бул., 30, стр. 1, Москва, 121205
А. П. Григорян
Московский государственный университет им. М. В. Ломоносова
Email: sybatchin@mail.ru
Россия, Ленинские горы, 1, Москва, 199991
А. А. Коригодский
Московский государственный университет им. М. В. Ломоносова
Email: sybatchin@mail.ru
Россия, Ленинские горы, 1, Москва, 199991
Ч. Цзюньян
Московский государственный университет им. М. В. Ломоносова
Email: sybatchin@mail.ru
Россия, Ленинские горы, 1, Москва, 199991
Я. Шусюн
Московский государственный университет им. М. В. Ломоносова
Email: sybatchin@mail.ru
Россия, Ленинские горы, 1, Москва, 199991
В. А. Пигарева
Институт элементоорганических соединений им. А. Н. Несмеянова Российской академии наук
Email: sybatchin@mail.ru
Россия, ул. Вавилова, 28, Москва, 119334
А. Е. Тищенко
Московский государственный университет им. М. В. Ломоносова
Email: sybatchin@mail.ru
Россия, Ленинские горы, 1, Москва, 199991
Г. Б. Хомутов
Московский государственный университет им. М. В. Ломоносова; Институт радиотехники и электроники имени В.А. Котельникова Российской академии наук
Email: sybatchin@mail.ru
Россия, Ленинские горы, 1, Москва, 199991; ул. Моховая, 11, корп. 7, Москва, 125009
А. В. Сыбачин
Московский государственный университет им. М. В. Ломоносова
Автор, ответственный за переписку.
Email: sybatchin@mail.ru
Россия, Ленинские горы, 1, Москва, 199991
Список литературы
- Izumrudov V.A., Mussabayeva B.K., Kassymova Z.S., Klivenko A.N., Orazzhanova L.K. Interpolyelectrolyte complexes: advances and prospects of application // Russ. Chem. Rev. 2019. V. 88. P. 1046–1062. https://doi.org/10.1070/RCR4877
- Fares H.M., Schlenoff J.B. Equilibrium overcompensation in polyelectrolyte complexes // Macromolecules. 2017. V. 50. № 10. P. 3968–3978. https://doi.org/10.1021/acs.macromol.7b00665
- Fu J., Schlenoff J.B. Driving forces for oppositely charged polyion association in aqueous solutions: enthalpic, entropic, but not electrostatic // J. Am. Chem. Soc. 2016. V. 138. № 3. P. 980–990. https://doi.org/10.1021/jacs.5b11878
- Meka V.S., Sing M.K.G., Pichika M.R., Nali S.R., Kolapalli V.R.M., Kesharwani P. A comprehensive review on polyelectrolyte complexes // Drug Discov. Today. 2017. V. 22. № 11. P. 1697–1706. https://doi.org/10.1016/j.drudis.2017.06.008
- Dautzenberg H. Polyelectrolyte complex formation in highly aggregating systems. 1. Effect of salt: polyelectrolyte complex formation in the presence of NaCl // Macromolecules. 1997. V. 30. № 25. P. 7810–7815. https://doi.org/10.1021/ma970803f
- Kabanov V. A. Fundamentals of polyelectrolyte complexes in solution and the bulk // In: Decher G., Schlenoff J. B. (Eds.) Multilayer thin films: sequential assembly of nanocomposite materials. Weinheim: Wiley-VCH. 2003. P. 47–86. https://doi.org/10.1002/3527600574.ch2
- Prajapati B.G., Sharma J.B., Sharma S., Trivedi N.D., Gaur M., Kapoor D.U. Harnessing polyelectrolyte complexes for precision cancer targeting: a comprehensive review // Med Oncol. 2024. V. 41. № 6. P. 145. https://doi.org/10.1007/s12032-024-02354-0
- Bertin A. Polyelectrolyte complexes of DNA and polycations as gene delivery vectors // In: Müller M. (Ed.) Polyelectrolyte complexes in the dispersed and solid state II. Advances in polymer science. Berlin: Springer. 2013. V. 256. P. 155–188. https://doi.org/10.1007/12_2013_218
- Durmaz E.N., Baig M.I., Willott J.D., de Vos W.M. Polyelectrolyte complex membranes via salinity change induced aqueous phase separation // ACS Appl. Polym. Mater. 2020. V. 2. № 7. P. 2612–2621. https://doi.org/10.1021/acsapm.0c00255
- Chen J., He R., Chen H., Hu B., Tokay B., Zhang Y.-B., He T. Kinetic aspects of salinity stability of layer-by-layer polyelectrolyte nanofiltration membranes: Impact of soaking time, types of ions and crosslinking // J. Membrane Sci. 2024. V. 709. P. 123087. https://doi.org/10.1016/j.memsci.2024.123087
- Bediako J.K., El Ouardi Y., Massima Mouele E.S., Mensah B., Repo E. Polyelectrolyte and polyelectrolyte complex-incorporated adsorbents in water and wastewater remediation – A review of recent advances // Chemosphere. 2023. V. 325. P. 138418. https://doi.org/10.1016/j.chemosphere.2023.138418
- Li J., van Ewijk G., van Dijken D.J., van der Gucht J., de Vos W. Single-step application of polyelectrolyte complex films as oxygen barrier coatings // ACS Appl. Mater. Interfaces. 2021. V. 13. № 18. P. 21844–21853. https://doi.org/10.1021/acsami.1c05031
- Panova I.G., Sybachin A.V., Spiridonov V.V., Kydralieva K., Jorobekova S., Zezin A.B., Yaroslavov A.A. Non-stoichiometric interpolyelectrolyte complexes: Promising candidates for protection of soils // Geoderma. 2017. V. 307. P. 91–97. https://doi.org/10.1016/j.geoderma.2017.08.001
- Chen M., Xu R., Wu Y., Xiong J., Keleş S.Z., Hankins N.P. Application of polyelectrolytes for contaminant removal and recovery during water and wastewater treatment: A critical review // J. Water Proc. Eng. 2024. V. 64. P. 105528. https://doi.org/10.1016/j.jwpe.2024.105528
- Zezin A.B., Mikheikin S.V., Rogacheva V.B., Zansokhova M.F., Sybachin A.V., Yaroslavov A.A. Polymeric stabilizers for protection of soil and ground against wind and water erosion // Adv. Colloid Interface Sci. 2015. V. 226. P. 17–23. https://doi.org/10.1016/j.cis.2015.06.006
- Akintola J., Chen Y., Digby Z.A., Schlenoff J.B. Antifouling coatings from glassy polyelectrolyte complex films // ACS Appl. Mater. Interfaces. 2023. V. 15. № 43. P. 50058–50068. https://doi.org/10.1021/acsami.3c11744
- Grigoriev D.O., Kohler K., Skorb E., Shchukin D.G., Mohwald H. Polyelectrolyte complexes as a ‘‘smart’’ depot for self-healing anticorrosion coatings // Soft Matter. 2009. V. 5. № 7. P. 1426–1432. https://doi.org/10.1039/B815147D
- Pigareva V.A., Senchikhin I.N., Bolshakova A.V., Sybachin A.V. Modification of polydiallyldimethylammonium chloride with sodium polystyrenesulfonate dramatically changes the resistance of polymer-based coatings towards wash-off from both hydrophilic and hydrophobic surfaces // Polymers. 2022. V. 14. № 6. P. 1247–1260. https://doi.org/10.3390/polym14061247
- Mkrtchyan K.V., Pigareva V.A., Zezina E.A., Kuznetsova O.A., Semenova A.A., Yushina Y.K., Tolordava E.R., Grudistova M.A., Sybachin A.V., Klimov D.I., Abramchuk S.S., Yaroslavov A.A., Zezin A.A. Preparation of biocidal nanocomposites in x-ray irradiated interpolyelectrolyte complexes of polyacrylic acid and polyethylenimine with Ag-ions // Polymers. 2022. V. 14. № 20. P. 4417. https://doi.org/10.3390/polym14204417
- Donath E., Sukhorukov G. B., Caruso F., Davis S.A., Möhwald H. Novel hollow polymer shells by colloid-templated assembly of polyelectrolytes // Angew. Chem. Int. Ed. 1998. V. 37. № 16. P. 2201–2205. https://doi.org/10.1002/(SICI)1521-3773(19980904)37:16%3C2201::AID-ANIE2201%3E3.0.CO;2-E
- Pergushov D.V., Zezin A.A., Zezin A.B., Müller A.H.E. Advanced functional structures based on interpolyelectrolyte complexes // In: Müller M. (Ed.) Polyelectrolyte complexes in the dispersed and solid state I. Advances in polymer science. Berlin: Springer. 2013. V. 255. P. 129–160. https://doi.org/10.1007/12_2012_182
- Tirrell M. Polyelectrolyte complexes: Fluid or solid? // ACS Cent Sci. 2018. V. 4. № 5. P. 532–533. https://doi.org/10.1021/acscentsci.8b00284
- Kabanov V.A. Polyelectrolyte complexes in solution and in bulk // Russ. Chem. Rev. 2005. V. 74. № 1. P. 3–20. https://doi.org/10.1070/RC2005V074N01ABEH001165
- Mende M., Buchhammer H.M., Schwarz S., Petzold G., Jaeger W. The stability of polyelectrolyte complex systems of poly(diallydimethyl-ammonium chloride) with different polyanions // Macromol. Symp. 2004. V. 211. № 1. P. 121–133. https://doi.org/10.1002/masy.200450709
- Izumrudov V.A., Paraschuk V.V., Sybachin A.V. Controlled phase separations in solutions of polyelectrolyte complexes—Potential for gene delivery // J. Drug Delivery Sci. Technol. 2006. V. 16. № 4. P. 267–274. https://doi.org/10.1016/S1773-2247(06)50049-8
- Izumrudov V.A., Lim S.K. The effect of charge and length of a blocking polycation on phase separation in aqueous salt-containing solutions of nonstoichiometric polyelectrolyte complexes // Polym. Sci. Ser. B. 1998. V. 40. P. 459–465.
- Pergushov D.V., Izumrudov V.A., Zezin A.B., Kabanov V.A. Stability of interpolyelectrolyte complexes in aqueous saline solutions – effect of the degree of polymerization of polyions // Polym. Sci. Ser. B. 1995. V. 37. P. 1739–1746.
- Davydova O.V., Zelikin A.N., Kargov S.I., Izumrudov V.A. Conformation of polyelectrolyte chains in dilute aqueous solutions investigated by conductometry, 1. influence of the degree of polymerization on the conformation of flexible vinylic polyanions and rigid native DNA // Macromol. Chem. Phys. 2001. V. 202. № 8. P. 1361–1367. https://doi.org/10.1002/1521-3935(20010501)202:8%3C1361::AID-MACP1361%3E3.0.CO;2-N
- Zhang Y., Yildirim E., Antila H.S., Valenzuela L.D., Sammalkorpi M., Lutkenhaus J.L. The influence of ionic strength and mixing ratio on the colloidal stability of PDAC/PSS polyelectrolyte complexes // Soft Matter. 2015. V. 11. № 37. P. 7392–7401. https://doi.org/10.1039/c5sm01184a
- Izumrudov V.A., Sybachin A.V. Phase separation in solutions of polyelectrolyte complexes: The decisive effect of a host polyion // Polym. Sci. Ser. A. 2006. V. 48. № 10. P. 1098–10104. https://doi.org/10.1134/S0965545X06100117
- Konyal E., Cengiz H.Y., Müftüler A., Deligöz H. Monitoring the salt stability and solvent swelling behavior of PAH-based polyelectrolyte multilayers by quartz crystal microbalance with dissipation // Polym. Eng. Sci. 2023. V. 63. № 10. P. 3328–3342. https://doi.org/10.1002/pen.26447
- Jha P.K., Desai P.S., Li J., Larson R.G. pH and salt effects on the associative phase separation of oppositely charged polyelectrolytes // Polymers. 2014. V. 6. № 5. P. 1414–1436. https://doi.org/10.3390/polym6051414
- Saikaew R., Meesorn W., Zoppe J.O., Weder C., Dubas S.T. Influence of the salt concentration on the properties of salt-free polyelectrolyte complex membranes // Macromol. Mater. Eng. 2019. V. 304. № 9. P. 1900245. https://doi.org/10.1002/mame.201900245
- Изумрудов B.A., Касаикин B.A, Ермакова Л.Н., Зезин А.Б. Исследование водорастворимых полиэлектролитных комплексов неэквимольного состава // Высокомол. coeд. 1978. Т. A20. №2. С. 400–406.
- Perry S.L., Li Y., Priftis D., Leon L., Tirrell M. The effect of salt on the complex coacervation of vinyl polyelectrolytes // Polymers. 2014. V. 6. № 6. P. 1756–1772. https://doi.org/10.3390/polym6061756
- Stevens M., Plimpton S. The effect of added salt on polyelectrolyte structure // Eur. Phys. J. B. 1998. V. 2. P. 341–345. https://doi.org/10.1007/s100510050257
- Carrillo J.M.Y., Dobrynin A.V. Polyelectrolytes in salt solutions: molecular dynamics simulations // Macromolecules. 2011. V. 44. № 14. P. 5798–5816. https://doi.org/10.1021/ma2007943
- Chituru S.V., Das S., Majumdar S. Impact of specific ion effects and electrostatic interactions on a polyelectrolyte-polyampholyte complex // Discov. Chem. Eng. 2024. V. 4. P. 6. https://doi.org/10.1007/s43938-024-00043-y
- Zelikin A.N., Litmanovich A.A., Paraschuk V.V., Sybatchin A.V., Izumrudov V.A. Conformational changes of aliphatic ionenes in water-salt solutions as a factor controlling stability of their complexes with calf thymus DNA // Macromolecules. 2003. V. 36. № 3. P. 2066–2071. https://doi.org/10.1021/ma021361x
- Pergushov D.V., Izumrudov V.A., Zezin A.B., Kabanov V.A. Effect of low-molecular-mass salts on the behaviour of water-soluble nonstoichiometric polyelectrolyte complexes // Poly. Sci. Ser. B. 1993. V. 35. № 7. P. 844–849.
- Izumrudov V.A., Kharenko O.A., Kharenko A.V., Gulyayeva Zh.G., Kasaikin V.A., Zezin A.B., Kabanov V.A. Behaviour of non-stoichiometric polyelectrolyte complexes in aqueous salt solutions // Polymer Science U.S.S.R. 1980. V. 22. P. 767–776.
- Digby Z.A., Yang M., Lteif S., Schlenoff J.B. Salt resistance as a measure of the strength of polyelectrolyte complexation // Macromolecules. 2022. V. 55. № 3. P. 978–988. https://doi.org/10.1021/acs.macromol.1c02151
- Boiko D.A., Kozlov K.S., Burykina J.V., Ilyushenkova V.V., Ananikov V.P. Fully automated unconstrained analysis of high-resolution mass spectrometry data with machine learning // J. Am. Chem. Soc. 2022. V. 144. № 32. P. 14590–14606. https://doi.org/10.1021/jacs.2c03631
- Shi Y.-F., Yang Z.-X., Ma S., Kang P.-L., Shang C., Hu P., Liu Z.-P. Machine learning for chemistry: basics and applications // Engineering. 2023. V. 27. P. 70–83. https://doi.org/10.1016/j.eng.2023.04.013
- LeCun Y., Bengio Y., Hinton G. Deep learning // Nature. 2015. V. 521. P. 436–444. https://doi.org/10.1038/nature14539
- Jumper J., Evans R., Pritzel A., Green T., Figurnov M., Ronneberger O., Tunyasuvunakool K., Bates R., Žídek A., Potapenko A., et al. Highly accurate protein structure prediction with AlphaFold // Nature. 2021. V. 596. P. 583–589. https://doi.org/10.1038/s41586-021-03819-2
- Dobbelaere M.R., Plehiers P.P., van de Vijver R., Stevens C.V., van Geem K.M. Machine learning in chemical engineering: strengths, weaknesses, opportunities, and threats // Engineering. 2021. V. 7. № 9. P. 1201–1211. https://doi.org/10.1016/j.eng.2021.03.019
- Zhou T., Song Z., Sundmacher K. Big Data creates new opportunities for materials research: a review on methods and applications of machine learning for materials design // Engineering. 2019. V. 5. № 6. P. 1017–1026. https://doi.org/10.1016/j.eng.2019.02.011
- Chen W., Iyer A., Bostanabad R. Data centric design: a new approach to design of microstructural material systems // Engineering. 2022. V. 10. P. 89–98. https://doi.org/10.1016/j.eng.2021.05.022
- Delaney J.S. ESOL: Estimating aqueous solubility directly from molecular structure // J. Chem. Inf. Comput. Sci. 2004. V. 44. № 3. P. 1000–1005. https://doi.org/10.1021/ci034243x
- Thebelt A., Wiebe J., Kronqvist J., Tsay C., Misener R. Maximizing information from chemical engineering data sets: Applications to machine learning // Chem. Eng. Sci. 2022. V. 252. P. 117469. https://doi.org/10.1016/j.ces.2022.117469
- Keith J.A., Vassilev-Galindo V., Cheng B., Chmiela S., Gastegger M., Müller K.-R., Tkatchenko A. Combining machine learning and computational chemistry for predictive insights into chemical systems // Chem. Rev. 2021. V. 121. № 16. P. 9816–9872. https://doi.org/10.1021/acs.chemrev.1c00107
- Lengauer T., Sander O., Sierra S., Thielen A., Kaiser R. Bioinformatics prediction of HIV coreceptor usage // Nature Biotechnology. 2007. V. 25. P. 1407–1410. https://doi.org/10.1038/nbt1371
- Senior A.W., Evans R., Jumper J., Kirkpatrick J., Sifre L., Green T., Qin C., Žídek A., Nelson A.W., Bridgland A., et al. Improved protein structure prediction using potentials from deep learning // Nature. 2020. V. 577. P. 706–710. https://doi.org/10.1038/s41586-019-1923-7
- Tkatchenko A. Machine learning for chemical discovery // Nature Communications. 2020. V. 11. P. 4125. https://doi.org/10.1038/s41467-020-17844-8
- Coe J. P. Machine learning configuration interaction // J. Chem. Theory Comput. 2018. V. 14. № 11. P. 5739–5749. https://doi.org/10.1021/acs.jctc.8b00849
- Zaspel P., Huang B., Harbrecht H., von Lilienfeld O.A. Boosting quantum machine learning models with a multilevel combination technique: Pople diagrams revisited // J. Chem. Theory Comput. 2019. V. 15. № 3. P. 1546–1559. https://doi.org/10.48550/arXiv.1808.02799
- Snyder J. C., Rupp M., Hansen K., Blooston L., Müller K.-R., Burke K. Orbital-free bond breaking via machine learning // J. Chem. Phys. 2013. V. 139. P. 224104. https://doi.org/10.1063/1.4834075
- Snyder J.C., Rupp M., Hansen K., Müller K.-R., Burke K. Finding density functionals with machine learning // Phys. Rev. Lett. 2012. V. 108. P. 253002. https://doi.org/10.1103/PhysRevLett.108.253002
- Bogojeski M., Vogt-Maranto L., Tuckerman M. E., Müller K.-R., Burke K. Quantum chemical accuracy from density functional approximations via machine learning // Nat. Commun. 2020. V. 11. P. 5223. https://doi.org/10.1038/s41467-020-19093-1
- de la Torre J. G., Hern J.G., Lopez Martinez M.C. Prediction of solution properties of flexible-chain polymers // Eur. J. Phys. 2008. V. 29. P. 945–956. https://doi.org/10.1088/0143-0807/29/5/008
- Gribova V., Navalikhina A., Lysenko O., Calligaro C., Lebaudy E., Deiber L., Senger B., Lavalle P., Vrana N.E. Prediction of coating thickness for polyelectrolyte multilayers via machine learning // Sci Rep. 2021. V. 11. P. 18702. https://doi.org/10.1038/s41598-021-98170-x
- Dral P. O., von Lilienfeld O. A., Thiel W. Machine learning of parameters for accurate semiempirical quantum chemical calculations // J. Chem. Theory Comput. 2015. V. 11. № 5. P. 2120–2125. https://doi.org/10.1021/acs.jctc.5b00141
- Kuenneth C., Ramprasad R. polyBERT: A chemical language model to enable fully machine-driven ultrafast polymer informatics // Nature Communications. 2023. V. 14. P. 4099. https://doi.org/10.21203/rs.3.rs-2116998/v1
- Pigareva V.A., Bolshakova A.V., Marina V.I., Sybachin A.V. Water-soluble interpolyelectrolyte complex based on poly(diallyldimethylammonium chloride) and sodium polyacrylate as a component for creating stable biocidal coatings // Colloid Journal. 2023. V. 85. P. 433–441. https://doi.org/10.1134/S1061933X23600100
- Dautzenberg H., Karibyants N. Polyelectrolyte complex formation in highly aggregating systems: Effect of salt – response to subsequent addition of NaCl // Macromolecular Chemistry and Physics. 1999. V. 200. P. 118–125. https://doi.org/10.1002/(SICI)1521-3935(19990101)200:1%3C118::AID-MACP118%3E3.0.CO;2-K
- G ulyaeva Z.G., Aldoshina I.V., Zansokhova M.F., Rogacheva V.B., Zezin A.B., Kabanov V.A. Phase separation in water-salt solutions of polyelectrolyte complexes // Polymer Science U.S.S.R. 1990. V. 32. P. 714–722.
- Jukić J., Korade K., Milisav A.-M., Marion I.D., Kovačević D. Ion-specific and solvent effects on PDADMA–PSS complexation and multilayer formation // Colloids and Interfaces. 2021. V. 5. № 3. P. 38. https://doi.org/10.3390/colloids5030038
Дополнительные файлы
