Protein Conformation Changes in 3D Protein Models as a Result of Mutations in Genes Associated with Maize Gynogenesis and Embryogenesis

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The article presents an analysis of the secondary, tertiary structures and conformation changes in 3D protein models as a result of spontaneous mutations in genes associated with maize (Zea mays L.) gynogenesis and embryogenesis. In particular, it was found that the of four-nucleotides insertion into the Zm_Mtl/Nld/Pla1 gene sequence leads to substitution of two α-helices with an unstructured section and a change in the amino acid composition of one of the β-folds in haploid-inducing (Stock 6, ZMS-8, ZMS-P) maize lines. The SNP at 131 position from the Zm_Dmp7 gene starting codon change the α-helix position in the haploid-inducing line CAU5 change, unlike the ZMS-8 line, which has a similar SNP and two additional amino acid substitutions. On the other hand, the SNP in the Zm_Bbm1 gene from parthenogenetic line AT-4 and Zm_CenH3 gene of haploid-inducing (ZMS-8, ZMS-P), and control (KM) maize lines do not lead to the amino acid substitutions in the corresponding proteins.

Texto integral

Acesso é fechado

Sobre autores

V. Fadeev

Institute of Biochemistry and Physiology of Plants and Microorganisms of the Saratov Scientific Center of the Russian Academy of Sciences

Email: chumakov_m@ibppm.ru
Rússia, Saratov, 410049

Yu. Fadeeva

Institute of Biochemistry and Physiology of Plants and Microorganisms of the Saratov Scientific Center of the Russian Academy of Sciences

Email: chumakov_m@ibppm.ru
Rússia, Saratov, 410049

E. Moiseeva

Institute of Biochemistry and Physiology of Plants and Microorganisms of the Saratov Scientific Center of the Russian Academy of Sciences

Email: chumakov_m@ibppm.ru
Rússia, Saratov, 410049

M. Chumakov

Institute of Biochemistry and Physiology of Plants and Microorganisms of the Saratov Scientific Center of the Russian Academy of Sciences

Autor responsável pela correspondência
Email: chumakov_m@ibppm.ru
Rússia, Saratov, 410049

Bibliografia

  1. Навашин С.Г. Избранные труды. Т. 1. М.; Л.: Изд-во АН СССР, 1951. 364 с.
  2. Chase S.S. Monoploid frequencies in a commercial double cross hybrid maize, and its component single cross hybrids and inbred lines // Genetics. 1949. V. 34. P. 328–332.
  3. Coe E.H. A line of maize with high haploid frequency // Am. Naturalist. 1959. V. 59. P. 381–382.
  4. Чумаков М.И., Мазилов С.И. Генетический контроль гиногенеза у кукурузы (обзор) // Генетика. 2022. Т. 58. № 4. C. 388–397. https://doi.org/10.31857/S001667582204004X
  5. Kelliher T., Starr D., Richbourg L. et al. MATRILINEAL, a sperm-specific phospholipase, triggers maize haploid induction // Nature. 2017. V. 542. P. 105–109. https://doi.org/10.1038/nature20827
  6. Gilles L.M., Khaled A., Laffaire J.B. et al. Loss of pollen-specific phospholipase NOT LIKE DAD triggers gynogenesis in maize // EMBO J. 2017. V. 36. P. 707–717. https://doi.org/10.15252/embj.201796603
  7. Liu C., Li X., Meng D. et al. A 4-bp insertion at ZmPLA1 encoding a putative phospholipase A generates haploid induction in maize // Mol. Plant. 2017. V. 10. P. 520–522. https://doi.org/10.1016/j.molp.2017.01.011
  8. Gilles L.M., Calhau A.R.M., La Padula V. et al. Lipid anchoring and electrostatic interactions target NOT-LIKE-DAD to pollen endo-plasma membrane // J. Cell Biol. 2021. V. 220. https://doi.org/10.1083/jcb.202010077
  9. Takahashi T., Mori T., Ueda K. et al. The male gamete membrane protein DMP9/DAU2 is required for double fertilization in flowering plants // Development. 2018. V. 45. Iss. 23. https://doi.org/10.1242/dev.170076
  10. Zhong Y., Liu C., Qi X. et al. Mutation of ZmDMP enhances haploid induction in maize // Nature Plants. 2019. V. 5. P. 575–580. https://doi.org/10.1038/s41477-019-0443-7
  11. Burrack L.S., Berman J. Flexibility of centromere and kinetochore structures // Trends in Genetics. 2012. V. 28. № 5. P. 204–212. https://doi.org/10.1016/j.tig.2012.02.003
  12. Hoopes G.M., Hamilton J.P., Wood J.C. et al. An updated gene atlas for maize reveals organ-specific and stress-induced genes // The Plant Journal. 2019. V. 97. № 6. P. 1154–1167. https://doi.org/10.1111/tpj.14184
  13. Stelpflug S.C., Sekhon R.S., Vaillancourt B. et al. An expanded maize gene expression atlas based on RNA sequencing and its use to explore root development // The Plant Genome. 2016. V.9 (1). P. 1–16. https://doi.org/10.3835/plantgenome2015.04.0025
  14. Chalyk S.T., Baumann A., Daniel G., Eder J. Aneuploidy as a possible cause of haploid-induction in maize // Maize Genetics Coop. Newsletter. 2003. V. 77. P. 29–30.
  15. Karimi-Ashtiyani R., Ishii T., Niessen M. et al. Point mutation impairs centromeric CENH3 loading and induces haploid plants // Proc. Nat Acad. Sci. USA. 2015. V. 112. № 36. P. 11211–11216. https://doi.org/10.1073/pnas.150433311
  16. Wang S., Jin W., Wang K. Centromere histone H3- and phospholipase-mediated haploid induction in plants // Plant Methods. 2019. V. 15. № 1. P. 1–10. https://doi.org/10.1186/s13007-019-0429-5
  17. Zhang Z., Qiu F., Liu Y. et al. Chromosome elimination and in vivo haploid production induced by Stock 6 – derived inducer line in maize (Zea mays L.) // Plant Cell Reports. 2008. V. 27. № 12. P. 1851–1860. https://doi.org/10.1007/s00299-008-0601-2
  18. Qiu F., Liang Y., Li Y. et al. Morphological, cellular and molecular evidences of chromosome random elimination in vivo upon haploid induction in maize // Current Plant Biology. 2014. V. 1. P. 83–90. https://doi.org/10.1016/j.cpb.2014.04.001
  19. Kelliher T., Starr D., Wang W. et al. Maternal haploids are preferentially induced by CENH3-tailswap transgenic complementation in maize // Frontiers in Plant Sci. 2016. V. 7. P. 414. https://doi.org/10.3389/fpls.2016.00414
  20. Heidmann I., De Lange B., Lambalk J. et al. Efficient sweet pepper transformation mediated by the BABY BOOM transcription factor // Plant Cell Rep. 2011. V. 30. P. 1107–1115. https://doi.org/10.1007/s00299-011-1018-x
  21. Florez S.L., Erwin R.L., Maximova S.N. et al. Enhanced somatic embryogenesis in Theobroma cacao using the homologous BABY BOOM transcription factor // BMC Plant Biol. 2015. V. 15. P. 121. https://doi.org/10.1186/s12870-015-0479-4
  22. Conner J.A., Mookkan M., Huo H. et al. A parthenogenesis gene of apomict origin elicits embryo formation from unfertilized eggs in a sexual plant // Proc. Natl Acad. Sci. USA. 2015. V. 112. № 36. P. 11205–11210. https://doi.org/10.1073/pnas.1505856112
  23. Conner J.A., Podio M., Ozias-Akins P. Haploid embryo production in rice and maize induced by PsASGR-BBML transgenes // Plant Reprod. 2017. V. 30 (1). P. 41–52. https://doi.org/10.1007/s00497-017-0298-x
  24. Moiseeva E.M., Fadeev V.V., Fadeeva Yu.V. et al. Comparative analysis of maize gynogenesis gene mutation // Russ. J. Genet. 2024. V. 60 (10). P. 1333–1340. https://doi.org/10.1134/S102279542470087X
  25. Jiang C., Sun J., Li R. et al. A reactive oxygen species burst causes haploid induction in maize // Molecular Plant. 2022. V. 15 (6). P. 943–955. https://doi.org/10.1016/j.molp.2022.04.001
  26. Xu X., Li L., Dong X. et al. Gametophytic and zygotic selection leads to segregation distortion through in vivo induction of a maternal haploid in maize // J. Exp. Bot. 2013. V. 64. P. 1083–1096. https://doi.org/10.1093/jxb/ers393
  27. Еналеева Н.Х., Тырнов В.С., Селиванова Л.П., Завалишина А.Н. Одинарное оплодотворение и проблема гаплоиндукции у кукурузы // Докл. АН СССР. 1997. Т. 353. С. 405–407.
  28. Гуторова О.В., Апанасова Н.В., Юдакова О.И. Создание генетически маркированных линий кукурузы с наследуемым и индуцированным типами партеногенеза // Изв. Самарского науч. центра РАН. 2016. Т. 18. № 2. С. 341–344.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Multiple alignment of the amino acid sequence fragment of the Zm_MTL/NLD/PLA1 protein sequence of Stock 6/ZMS-8/ZMS-P haploinducing lines. The site of the amino acid sequence change is marked with a box. Dots in the figure indicate amino acid matches, and dashes indicate the absence of amino acids.

Baixar (86KB)
3. Fig. 2. Three-dimensional model of the Zm_PLA1 protein of the B73 (a) and Stock 6/ZMS-8/ZMS-P (b) lines (AlphaFold3). The β-fold and two α-helices of line B73, highlighted in green, are replaced by an unstructured region and an amino acid composition-altered β-fold, highlighted in red, as a result of a four-nucleotide insertion.

Baixar (247KB)
4. Fig. 3. Multiple amino acid sequence alignment of DMP8/DUF679 proteins of the B73, CAU5, ZMS-P, and ZMS-8 lines. Amino acid substitutions are shown in bold.

Baixar (379KB)
5. Fig. 4. AlphaFold3-predicted three-dimensional structures of the DMP8/DUF679 protein encoded by the Zm_Dmp7/Duf679 gene of maize lines B73 (a), CAU5 (b), ZMS-P (c), and ZMS-8 (d). The locations of amino acid substitutions are marked in red colour.

Baixar (214KB)
6. Fig. 5. Nucleotide alignment fragments of the Zm_Bbm1 gene of maize lines B73 and AT-4 containing single-nucleotide substitutions. Dots indicate nucleotide matches; bold letters indicate single-nucleotide substitutions.

Baixar (195KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2025